范小明

教授
79

 硕士生导师

报考该导师

报考该导师研究生的方式

欢迎你报考范小明老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择范小明老师,你的所有申请信息将发送给范小明老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请范小明老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为范小明老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考范小明老师招收的专业和方向,进入复试后提交导师意向时选择范小明老师。

4、如果你有兴趣攻读范小明老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭
个人信息

学历:博士研究生毕业

学位:理学博士学位

毕业院校:四川大学

所在单位:数学学院

学科:统计学
应用数学

论文成果

1Shengfan Zhou, Xiaoming Fan, Kernel sections for non-autonomous strongly damped wave equations, Journal of Mathematical Analysis and Applications, 275(2002) 850-869.  

2Xiaoming Fan, Random attractor for a damped sin-Gordon equation with white noise, Pacific Journal of Mathematics, 216(2004), 63-76. 

3Xiaoming Fan, Shengfan Zhou, The inflated attractors of non-autonomous strongly damped wave equations, Acta Mathematicae Applicatae Sinica, English Series 20(2004), 547-556.

4Xiaoming Fan, Shengfan Zhou, Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type, Applied Mathematics and Computation, 158(2004), 253-266.   

5Xiaoming Fan, Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise, Stochastic Analysis and Applications, 24(2006), 767-793.  6Xiaoming Fan, Yaguang Wang, Fractal dimension on attractors for a stochastic wave equation with nonlinear damping and white noise, Stochastic Analysis and Applications, 2(2007), 381-396.  7Xiaoming Fan, YaguangWang, Pullback attractors for a second order nonautonomous lattice dynamical system with nonlinear dampping, Physics Letter A, 365(2007), 17-27.

8Xiaoming Fan, Global periodic attractor for a first-Order lattice dynamical system with time-periodic term, Far East Journal of Applied Mathematics, 27(1)(2007), 137-144.

9Xiaoming Fan, Random attractors for a damped stochastic wave equation with multiplicative noise, International Journal of mathematics, 4(19)(2008), 421-437.  

10Xiaoming Fan, Exponential Attractor for a First-Order Dissipative Lattice Dynamical System, Journal of Applied Mathematics, Vol. 2008, Article ID 354652, 8 pages, 2008. doi:10.1155/2008/354652.

11Xiaoming Fan, H. Yang, Exponential attractor and its fractal dimension for a second order lattice dynamical system. Journal of Mathematical Analysis and Applications, 367(2010), Pages 350-359.

12Xiaoming  Fan, The a.s. well-posedness of stochastic delay differential equations with white noise, Far East Journal of Mathematics, 57(2011), 153-170.

13Han Yang, Xiaoming Fan and Shihui Zhu, Global Analysis for Rough Solutions to the Davey-Stewartson System, Hindawi Publishing Corporation, Abstract and Applied Analysis

Volume 2012, Article ID 578701, 22 pages, doi:10.1155/2012/578701.

14Xiaoming Fan, Huatao Chen, Attractors for the stochastic reaction-diffusion equation driven by linear multiplicative noise with a variable coefficient, J. Math. Anal. Appl. 398 (2013): 715-728.

15X. Ding, Xiaoming Fan and X. Liu, Absolute Exponential Admissibility of Switched Descriptor Delayed Systems with Sector-Bounded Nonlinearity, International Journal of Control, Automation, and Systems (2013) 11(4):692-703 16Dingshi Li, Xiaoming Fan, Exponential stability of impulsive stochastic partial differential equations with delay, Statistics & Probability Letters, (2017) 126: 185-192.

17Xiaoming Fan, On convergent rate of  the attractor for  a singularly perturbed wave equation, Applied Mathematic and compution, (2018)316:370-380 18Huatao Chen, Jingfei Jiang, Dengqing Cao and Xiaoming Fan, Numerical investigation on global dynamics for nonlinear stochastic heat conduction via global random attractors theory, Applied Mathematics and nonlinear sciences, accepted.

19Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effectELECTRONIC RESEARCH ARCHIVE, 2021, 29(5).

20Spatiotemporal dynamics for a Belousov–Zhabotinsky reaction–diffusion system with nonlocal effectsApplicable Analysis, 2021.



研究领域

1、研究数学、物理等领域的微分方程. 关注系统的适定性、平衡点的稳定性、解的全局正则性以及吸引子问题。此研究领域是应用最广泛的,有利于学生选择控制、金融、物理、力学等方向继续深造。教学中注重锻炼学生的科学学习、自主学习及自主研究的能力,使得每个学生在博士学习或今后工作中有出类拔萃的极大可能。


2、研究随机微分方程、随机偏微分方程. 关注基于随机微分方程的金融统计、生物统计以及数理统计,这是有前途的统计方向,有助于掌握科学的统计工具和方法,也有助于学术探索.

专利

暂无内容

Copyright © 2019 西南交通大学. All Rights Reserved.蜀ICP备05026985号
犀浦校区地址:中国四川省成都市郫都区犀安路 999 号    邮编:611756
川公网安备51010602000061号
技术支持:信息化与网络管理处 登录

总访问量: 本月访问: 今日访问量: 最后更新时间:2019-10-18