博士生导师
硕士生导师
个人信息Personal Information
学历:博士研究生毕业
学位:哲学博士学位
办公地点:机械馆2615室
毕业院校:香港科技大学
学科:工程热物理
所在单位:机械工程学院
报考该导师研究生的方式
欢迎你报考曾义凯老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择曾义凯老师,你的所有申请信息将发送给曾义凯老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请曾义凯老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为曾义凯老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考曾义凯老师招收的专业和方向,进入复试后提交导师意向时选择曾义凯老师。
4、如果你有兴趣攻读曾义凯老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
-
Yikai Zeng, Fenghao Li, Fei Lu, Xuelong Zhou, Yanping Yuan, Xiaoling Cao, Bo Xiang, A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries, Applied Energy (IF=8.426), 238 (2019) 435-441.
Y.K. Zeng, T.S. Zhao, X.L. Zhou, J. Zou, Y.X. Ren, A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries, Journal of Power Sources (IF=7.467), 352 (2017) 77-82.
Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Wei, Y.X. Ren, A novel iron-lead redox flow battery for large-scale energy storage, Journal of Power Sources (IF=7.467), 346 (2017) 97-102.
Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Wei, H.R. Jiang, A low-cost iron-cadmium redox flow battery for large-scale energy storage, Journal of Power Sources (IF=7.467), 330 (2016) 55-60.
Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Zeng, L. Wei, The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries, Applied Energy (IF=8.426), 182 (2016) 204-209.
Y.K. Zeng, X.L. Zhou, L. Zeng, X.H. Yan, T.S. Zhao, Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields, Journal of Power Sources (IF=7.467), 327 (2016) 258-264.
Y.K. Zeng, X.L. Zhou, L. An, L. Wei, T.S. Zhao, A high-performance flow-field structured iron-chromium redox flow battery, Journal of Power Sources (IF=7.467), 324 (2016) 738-744.
Y.K. Zeng, T.S. Zhao, L. An, X.L. Zhou, L. Wei, A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage, Journal of Power Sources (IF=7.467), 300 (2015) 438-443.
Y.K. Zeng, P. Fan, X. Zhang, C. Fu, J. Li, G. Li, Sensitivity analysis for a planar SOFC: Size effects of the porous gas diffusion layer underneath the channel rib, Fuel Cells (IF=2.149), 14 (2014) 123-134.
X.L. Zhou, Y.K. Zeng, X.B. Zhu, L. Wei, T.S. Zhao, A high-performance dual-scale porous electrode for vanadium redox flow batteries, Journal of Power Sources (IF=7.467), 325 (2016) 329-336.
L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng, H.R. Jiang, Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries, Journal of Power Sources (IF=7.467), 341 (2017) 318-326.
X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, L. Wei, Critical transport issues for improving the performance of aqueous redox flow batteries, Journal of Power Sources (IF=6.945), 339 (2017) 1-12.
Y.X. Ren, T.S. Zhao, M. Liu, Y.K. Zeng, H.R. Jiang, A self-cleaning Li-S battery enabled by a bifunctional redox mediator, Journal of Power Sources (IF=7.467), 361 (2017) 203-210.
M.C. Wu, T.S. Zhao, H.R. Jiang, Y.K. Zeng, Y.X. Ren, High-performance zinc bromine flow battery via improved design of electrolyte and electrode, Journal of Power Sources (IF=7.467), 355 (2017) 62-68.
Y.X. Ren, T.S. Zhao, M. Liu, P. Tan, Y.K. Zeng, Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation, Journal of Power Sources (IF=7.467), 336 (2016) 115-125.
L. Zeng, T.S. Zhao, L. Wei, Y.K. Zeng, Z.H. Zhang, Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries, Journal of Power Sources (IF=7.467), 331 (2016) 452-461.
X.L. Zhou, T.S. Zhao, Y.K. Zeng, L. An, L. Wei, A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries, Journal of Power Sources (IF=6.945), 329 (2016) 247-254.
H.R. Jiang, P. Tan, M. Liu, Y.K. Zeng, T.S. Zhao, Unraveling the Positive Roles of Point Defects on Carbon Surfaces in Nonaqueous Lithium–Oxygen Batteries, Journal of Physical Chemistry C (IF=4.484), 120 (2016) 18394-18402
X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, X.B. Zhu, Performance of a vanadium redox flow battery with a VANADion membrane, Applied Energy (IF=8.426), 180 (2016) 353-359.
L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries, Applied Energy (IF=8.426), 180 (2016) 386-391.
L. Zeng, T.S. Zhao, L. Wei, Y.K. Zeng, Z.H. Zhang, Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries Journal of Power Sources (IF=7.467), 327 (2016) 374-383.
X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, L. Wei, Modeling of ion transport through a porous separator in vanadium redox flow batteries, Journal of Power Sources (IF=7.467), 327 (2016) 67-76.
L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, Titanium Carbide Nanoparticle-Decorated Electrode Enables Significant Enhancement in Performance of All-Vanadium Redox Flow Batteries, Energy Technology (IF=3.175), 4 (2016) 990-996.
X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, X.H. Yan, A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility, Applied Energy (IF=8.426), 158 (2015) 157-166.
P. Fan, G. Li, Y.K. Zeng, X. Zhang, Numerical study on thermal stresses of a planar solid oxide fuel cell, International Journal of Thermal Sciences(IF=3.488), 77 (2014) 1-10.
L. Zeng, T.S. Zhao, L. Wei, Y.K. Zeng, X.L. Zhou, 2018, Mn3O4 nanoparticles‐decorated carbon cloths with a superior catalytic activity toward the V(II)/V(III) redox reaction in vanadium redox flow batteries, Energy Technology, (IF=3.175) 6 (2018) 1228-1236.
-
主持科研项目
国家自然科学基金面上项目(52176206):液流电池用再平衡电池物质跨膜传输过程及其稳定高效运行机制研究,2022/01-2025/12.
国家自然科学基金青年科学基金项目(51806182):液流电池催化剂原位电沉积过程电化学与物质传输耦合特性研究,2019/01-2021/12.
企业横向课题,高性能全钒液流电池电堆开发,2021/01-2021/12.
企业横向课题,新型液流电池储能系统研发及应用,2021/01-2021/12.
中央高校基本科研业务费科技创新项目(2682018CX10)2018/01-2020/12.
四川省重点研发项目:流场结构式全钒液流电池多孔电极铋催化剂分布特性研究,2019/01-2020/12.
西南交通大学人才引进科研启动经费.
企业横向课题,XX电池数值模拟及优化,2019/07-2020/07.
企业横向课题,XX电池特性测试,2019/07-2020/07.
2019年度科技部高端外国专家引进交流计划,大规模储能系统技术交流及研究,2019-2020.
液流电池技术介绍
随着能源紧缺、环境污染问题的日益严重,人们对风能、太阳能等可再生能源的开发和利用越来越广泛,但这些可再生能源具有间歇性、波动性,直接并网会对电网造成巨大冲击[1-3]。大规模储能技术是解决可再生能源发电间歇性问题的重要手段,也是解决电力系统供需矛盾、保证电网稳定运行、发展智能电网的关键技术。如表1所示,现有的各种储能技术尚存在技术上的限制,难以广泛应用。例如,铅酸电池使用寿命较短,难以胜任大规模储能的要求[4]。液流储能电池技术是一种新型大规模电化学储能技术。如图1所示,它通过溶解在电解液中活性物质得失电子(价态变化)进行“电能-化学能-电能”的转化,实现电能的储存与释放。相对于其他的储能技术,液流电池储能技术具有输出功率与容量相互独立、系统设计灵活、响应速度快、能量效率高、自放电速率低、使用寿命长等优点,因此受到人们的广泛关注[5-12]。
表1 现有各种储能技术对比
图1 液流电池结构示意图
全钒液流电池是一种正负极都采用钒离子为活性物质的液流电池。作为过渡金属,钒的价态十分丰富,+2、+3、+4、+5 价离子在水里均有不错的溶解度,而且颜色也十分好看,如图2所示。钒 +2 价和 +5 价离子间有 1.26 V 的电位差,这就给了钒自己和自己组成电池的能力。
图2 +2,+3,+4,+5价钒水溶液
它的正极采用V(IV)/V(V)电对,负极采用V(II)/V(III)电对,通过以下电化学过程储存或释放电能:
正极:
E0=+1.01 V vs. SHE (1-1a)
负极:
E0=-0.25 V vs. SHE (1-1b)
总反应:
E0=1.26 V (1-1c)
全钒液流电池正负极都采用钒元素为活性物质,可以很好地克服液流电池中活性离子穿透隔膜造成的交叉污染问题,具有较高的容量保持率及循环寿命[13], 并作为重要能源装备技术被国家明确列入《中国制造2025—能源装备实施方案》。VRFB系统由一个电堆、两个储能罐以及配套的液流泵和管路组成。电解液平时存在储能罐里,充放电时泵入电堆中进行反应。实际应用时,储能罐、电堆、液流泵等都可以整合于一套集装箱内,实现自动化运行。
全钒液流电池相对于锂电池的优势主要有:
ü 方便规模化
一套系统可以做小也可以做大,或者由多个集装箱自由组合而成。
ü 使用寿命长
锂离子电池的寿命可能只有 8 年,全钒液流电池寿命可长达 20 年,适合做固定式储能电站。ü 安全性较好
对于锂离子电池忌讳的大电流和过充过放毫无压力,无起火爆炸的危险。国内外液流电池储能项目相关报导:
1. 武汉100MW/400MWh全钒液流储能电站 http://www.escn.com.cn/news/show-696180.html
2. 美国爱荷华州首个1.05MWh全钒液流电池光储项目 http://www.escn.com.cn/news/show-700961.html
3.沙特计划建GW级液流电池生产工厂 http://www.escn.com.cn/news/show-736290.html
4. 辽宁将建世界最大化学储能示范项目,总投资35亿元 http://mchuneng.bjx.com.cn/mnews/20161027/783824.shtml
5. Bushveld宣布在南非实施450kWh全钒液流电池储能项目 http://mchuneng.bjx.com.cn/mnews/20190415/974691.shtml
6.国家电投河北公司铁铬液流电池储能示范项目落地 https://m.xianjichina.com/special/detail_403211.html
7.国电投中央研究院与国电投河北公司签订铁铬液流电池储能示范项目 http://mchuneng.bjx.com.cn/mnews/20190527/982723.shtml
8.湖北枣阳3MW/12MWh储能项目竣工投运 https://www.xianjichina.com/special/detail_382205.html
9.四川乐山80kW/480kWh全钒液流电池储能示范工程 http://mchuneng.bjx.com.cn/mnews/20181016/934064.shtml
10.青海海东将建设液流电池储能的光储充智能微电网项目 http://mchuneng.bjx.com.cn/mnews/20190621/987699.shtml
参考文献
[1] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chemical reviews, 111 (2011) 3577-3613.
[2] 谢聪鑫, 郑琼, 李先锋, 张华民, 储能科学与技术, 6 (2017) 1050-1057.
[3] 李华, 常守文, 严川伟, 电化学, 8 (2002) 257-262.
[4] C.J. Rydh, Journal of power sources, 80 (1999) 21-29.
[5] Q. Xu, T.S. Zhao, Progress in Energy and Combustion Science, 49 (2015) 40-58.
[6] Y.K. Zeng, T.S. Zhao, L. An, X.L. Zhou, L. Wei, Journal of Power Sources, 300 (2015) 438-443.
[7] X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, L. Wei, Journal of Power Sources, 339 (2017) 1-12.
[8] 刘素琴, 黄可龙, 刘又年, 李林德, 陈立泉, 电池, 35 (2006) 356-359.
[9] 朱顺泉, 孙娓荣, 汪钱, 尹海涛, 王保国, 化工进展, 26 (2007) 207-211.
[10] Q. Wang, Z. Qu, Z. Jiang, W. Yang, Applied Energy, 213 (2018) 293-305.
[11] X. Li, C. Xie, Y. Duan, W. Xu, H. Zhang, Angewandte Chemie International Edition, (2017).
[12] F. Yang, S.M.A. Mousavie, T.K. Oh, T. Yang, Y. Lu, C. Farley, R.J. Bodnar, L. Niu, R. Qiao, Z. Li, Advanced Energy Materials, (2018).
[13] Y. Liu, Y. Shen, L. Yu, L. Liu, F. Liang, X. Qiu, J. Xi, Nano Energy, 43 (2017).
[14] T. Liu, X. Li, H. Nie, C. Xu, H. Zhang, Journal of Power Sources, 286 (2015) 73-81.
- 暂无内容