张波 副教授

硕士生导师

个人信息Personal Information


教师英文名称:Bo ZHANG

学历:博士研究生毕业

学位:工学博士学位

办公地点:四川省成都市高新西区西部园区西南交通大学犀浦校区

性别:

毕业院校:华中科技大学

学科:一般力学与力学基础. 固体力学

所在单位:力学与航空航天学院

报考该导师研究生的方式

欢迎你报考张波老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张波老师,你的所有申请信息将发送给张波老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张波老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张波老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张波老师招收的专业和方向,进入复试后提交导师意向时选择张波老师。

4、如果你有兴趣攻读张波老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

科研论文

当前位置: 中文主页 >> 科学研究 >> 科研论文

Wuyuan Zhang, Bo Zhang*, Huoming Shen, Songye Jin and Yuxing Wang. Size-Dependent Rigid–Flexible Coupling Dynamics of Functionally Graded Rotating Moderately Thick Microplates

发表刊物:International Journal of Structural Stability and Dynamics

关键字:Rigid–flexible coupling dynamic; functionally graded (FG) microplates; modified couple stress theory; nonlinear coupling deformation; Chebyshev–Ritz method.

摘要:Micro air vehicles, which are typical small-sized rotating-motion systems, have seen major advancements in recent years. To provide some theoretical basis for developing and producing micro air vehicles, this study establishes a novel rigid–flexible coupling dynamic model for functionally graded (FG) moderately thick rectangular microplates attached to a central rotating rigid hub based on the modified couple stress theory and first-order shear deformation theory. The proposed model incorporates nonlinear coupling term of in-plane deformation to reflect the dynamic stiffening effect caused by rotational motion. Material characteristics of the FG microplate have a linear powerlaw distribution along the thickness axis. Further, the discrete form dimensionless coupling dynamic equations and their numerical solutions are obtained by combining the Euler–Lagrange equation and the Chebyshev–Ritz method. Convergence and comparative studies are carried out to demonstrate the accuracy and validity of the proposed model. Thereafter, the influence of material length scale parameter, rotational speed, gradient index, and aspect ratio on the frequency of the microplates is investigated. Numerical results reveal that couple stress and dynamic stiffening effects both enhance the rigidity of the microplates, whereas the gradient index decreases the rigidity. Nonlinear coupling term which leads to significant differences in frequency value and trace line can't be ignored for rotative structure. In-plane motion and its coupling terms play a significant function for the moderately thick or thick microplates. The increase of rotational speed and gradient index will reduce the size dependency of the microplate.Furthermore, the frequency trajectory steering and corresponding mode transition phenomenon are graphically represented.

论文类型:SCI

论文编号:2350169

是否译文:

发表时间:2023-03-09