颜川奇 副教授

个人信息Personal Information


出生日期:1992-01-01

入职时间:2020-07-10

学历:博士研究生毕业

学位:工学博士学位

办公地点:School of civil engineering, Southwest Jiaotong University, Sichuan, Chengdu, 610031

性别:

在职信息:在岗

学科:道路与铁道工程. 交通运输. 土木工程

报考该导师研究生的方式

欢迎你报考颜川奇老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择颜川奇老师,你的所有申请信息将发送给颜川奇老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请颜川奇老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为颜川奇老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考颜川奇老师招收的专业和方向,进入复试后提交导师意向时选择颜川奇老师。

4、如果你有兴趣攻读颜川奇老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

学术论文

当前位置: 中文主页 >> 学术论文

以第一或通讯作者身份发表SCI+EI检索论文30余篇,部分成果如下:


SCI检索论文


[1]     Yan C, Yan J, Shi B, et al. Proposing a novel double sigmoidal model to fit the master curve for various polymer-modified asphalt[J]. International Journal of Pavement Engineering, 2022: 1-14.

[2]     Zhang J, He A, Xie B, et al. Characterization of various modified asphalts using force ductility test with “8 “shaped mold and straight mold[J]. Construction and Building Materials, 2022, 356: 129251.

[3]     Zhou Z, Yu X, Yuan L, et al. Comparative study on the chemical and rheological properties of elastomer-based and resin-based HVMAs[J]. Measurement, 2022, 199: 111441.

[4]     Lv Q, Lu J, Tang X, et al. Evaluation of the moisture resistance of rubberized asphalt using BBS/UTM bonding test, TSR and HWT test[J]. Construction and Building Materials, 2022, 340: 127831.

[5]     Yan C, Lv Q, Zhang A A, et al. Modeling the modulus of bitumen/sbs composite at different temperatures based on kinetic models[J]. Composites Science and Technology, 2022, 218: 109146.

[6]     Yan C, Yuan L, Yu X, et al. Characterizing the fatigue resistance of multiple modified asphalts using time sweep test, LAS test and elastic recovery test[J]. Construction and Building Materials, 2022, 322: 125806.

[7]     Zhang J, Huang W, Zhang Y, et al. Evaluation of the terminal blend crumb rubber/SBS composite modified asphalt[J]. Construction and Building Materials, 2021, 278: 122377.

[8]     Yan C, Huang W, Xu J, et al. Quantification of re-refined engine oil bottoms (REOB) in asphalt binder using ATR-FTIR spectroscopy associated with partial least squares (PLS) regression[J]. Road Materials and Pavement Design, 2022, 23(4): 958-972.

[9]     Yan C, Zhang Y, Bahia H U. Predicting rutting performance of asphalt mixture from binder properties and mixture design variables[J]. Road Materials and Pavement Design, 2022, 23(1): 62-79.

[10]  Lv Q, Huang W, Zheng M, et al. Investigating the asphalt binder/mastic bonding healing behavior using bitumen bonding strength test and X-ray Computed Tomography scan[J]. Construction and Building Materials, 2020, 257: 119504.

[11]  Yan C, Zhang Y, Bahia H U. Comparison between SCB-IFIT, un-notched SCB-IFIT and IDEAL-CT for measuring cracking resistance of asphalt mixtures[J]. Construction and Building Materials, 2020, 252: 119060.

[12]  Wang S, Huang W, Lv Q, et al. Influence of different high viscosity modifiers on the aging behaviors of SBSMA[J]. Construction and Building Materials, 2020, 253: 119214.

[13]  Zhang J, Huang W, Zhang Y, et al. Evaluating four typical fibers used for OGFC mixture modification regarding drainage, raveling, rutting and fatigue resistance[J]. Construction and Building Materials, 2020, 253: 119131.

[14]  Yan C, Huang W, Zheng M, et al. Influence of ageing on high content polymer modified asphalt mixture stripping, cracking and rutting performances[J]. Road Materials and Pavement Design, 2021, 22(8): 1824-1841.

[15]  Zhou L, Huang W, Zhang Y, et al. Evaluation of the adhesion and healing properties of modified asphalt binders[J]. Construction and Building Materials, 2020, 251: 119026.

[16]  Lv Q, Huang W, Zheng M, et al. Influence of gradation on asphalt mix rutting resistance measured by Hamburg Wheel Tracking test[J]. Construction and Building Materials, 2020, 238: 117674.

[17]  Yan C, Huang W, Ma J, et al. Characterizing the SBS polymer degradation within high content polymer modified asphalt using ATR-FTIR[J]. Construction and Building Materials, 2020, 233: 117708.

[18]  Lin P, Huang W, Liu X, et al. Laboratory evaluation of the effects of long-term aging on high-content polymer-modified asphalt binder[J]. Journal of Materials in Civil Engineering, 2020, 32(7): 04020157.

[19]  Yan C, Huang W, Lv Q, et al. Investigating the field short-term aging of high content polymer-modified asphalt[J]. International Journal of Pavement Engineering, 2021, 22(10): 1263-1272.

[20]  Yan C, Huang W, Lin P, et al. Chemical and rheological evaluation of aging properties of high content SBS polymer modified asphalt[J]. Fuel, 2019, 252: 417-426.

[21]  Lv Q, Huang W, Sadek H, et al. Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg Wheel-Tracking Device test and Multiple Stress Creep Recovery test[J]. Construction and Building Materials, 2019, 206: 62-70.

[22]  Yan C, Huang W, Xiao F, et al. Influence of polymer and sulphur dosages on attenuated total reflection Fourier transform infrared upon Styrene–Butadiene–Styrene-modified asphalt[J]. Road Materials and Pavement Design, 2019, 20(7): 1586-1600.

[23]  Yan C, Xiao F, Huang W, et al. Critical matters in using Attenuated Total Reflectance Fourier Transform Infrared to characterize the polymer degradation in Styrene–Butadiene–Styrene-modified asphalt binders[J]. Polymer Testing, 2018, 70: 289-296.

[24]  Yan C, Xiao F, Huang W. Short-term aging of high-content SBSMA[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018186.

[25]  Yan C, Huang W, Xiao F, et al. Proposing a new infrared index quantifying the aging extent of SBS-modified asphalt[J]. Road Materials and Pavement Design, 2018, 19(6): 1406-1421.

[26]  Yan C, Huang W, Tang N. Evaluation of the temperature effect on Rolling Thin Film Oven aging for polymer modified asphalt[J]. Construction and Building Materials, 2017, 137: 485-493.

[27]  Yan C, Huang W, Lv Q. Study on bond properties between RAP aggregates and virgin asphalt using Binder Bond Strength test and Fourier Transform Infrared spectroscopy[J]. Construction and Building Materials, 2016, 124: 1-10.


EI检索论文

[1]     宋珲,陈小江,张新玉,颜川奇,任东亚,艾长发.采用衰减全反射红外光谱检测改性沥青的SBS掺量及其老化降解程度[J].中南大学学报(自然科学版),2021,52(07):2211-2220.

[2]     黄卫东,颜川奇,刘少鹏,鄯增平,肖飞鹏.溶解性胶粉/SBS复合改性沥青低温性能评价[J].建筑材料学报,2016,19(06):1088-1091.

[3]     宋珲,陈小江,罗婷,张新玉,颜川奇.惯性矩对DSR动态测试的影响及其替代方法[J].建筑材料学报,2022,25(07):760-766.

[4]     金大勇,颜川奇,易宏宇,郑茂,艾长发.老化对改性沥青宽温度域黏弹特性的影响[J].建筑材料学报,2022,25(12):1321-1328.

[5]     周正峰,于晓涛,陶雅乐,郑茂,颜川奇.基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J/OL].吉林大学学报(工学版):

1-13[2023-01-16].DOI:10.13229/j.cnki.jdxbgxb20210991.

[6]     姚震,张凌波,梁鹏飞,王仕峰,颜川奇.多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J].材料导报,2022,36(16):101-107.



更多详细信息如下:

【Google scholar】https://scholar.google.com/citations?hl=zh-CN&user=UR-dHFMAAAAJ

【Researchgate】https://www.researchgate.net/profile/Chuanqi-Yan