张旭

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度与微纳米力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料

报考该导师研究生的方式

欢迎你报考张旭老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。

4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

2020

当前位置: 多尺度材料力学 >> 团队新闻 >> 2020

2020-07-02 多尺度材料力学研究组与与马普钢铁所安大勇博士、Zaefferer博士合作发表的论文“The combined and interactive effects of orientation, strain amplitude, cycle number, stacking fault energy and hydrogen doping on microstructure evolution of polycrystalline high-manganese steels under low-cycle fatigue”在期刊 International Journal of Plasticity 上在线发表。

Highlights

  • •Dislocation patterns of more than 1000 grains with defined loading conditions are observed by an integrated experimental approach combining DIC, EBSD and ECCI.


  • •Taylor factor is found to represent the crystallographic orientation information in polycrystalline materials more accurately than the commonly used loading direction parameter.


  • •The combined and interactive influences of crystallographic orientation, strain amplitude, cycle number, stacking fault energy and hydrogen doping on LCF behaviour of HMnSs are explored and discussed in detail.

Abstract

We studied the combined and interactive effects of crystallographic orientation, strain amplitude, cycle number, stacking fault energy (SFE) and hydrogen doping on the microstructure evolution of polycrystalline high-manganese steels (HMnSs) under low-cycle fatigue (LCF). An integrated experimental approach combining digital image correlation (DIC), electron backscatter diffraction (EBSD) and electron channelling contrast imaging (ECCI) at interrupted cycles was performed in the same region of interest on the bulk shear samples, which enables us to systematically compare the dislocation patterns of grains with defined loading conditions at a much larger field of view and less artefacts compared to transmission electron microscopy (TEM). We found that Taylor factor (M) works well with describing the effect of crystallographic orientation, which was further proved by the crystal plasticity finite element method (CPFEM). In detail, grains with a medium M value


Link

https://doi.org/10.1016/j.ijplas.2020.102803