xinghuanlai Associate Professor

Supervisor of Doctorate Candidates

Supervisor of Master's Candidates

  

  • Education Level: PhD graduate

  • Professional Title: Associate Professor

  • Alma Mater: 英国诺丁汉大学

  • Supervisor of Doctorate Candidates

  • Supervisor of Master's Candidates

  • School/Department: 计算机与人工智能学院

  • Discipline:Communications and Information Systems
    Computer Science and Technology
  • MORE>
    Recommended Ph.D.Supervisor Recommended MA Supervisor
    Language: 中文

    Paper Publications

    A Probabilistic Approach for Cooperative Computation Offloading in MEC-Assisted Vehicular Networks

    DOI number:10.1109/TITS.2020.3017172

    Affiliation of Author(s):Southwest Jiaotong Univ, Sch Informat Sci & Technol

    Journal:IEEE Transactions on Intelligent Transportation Systems

    Key Words:ServersTask analysis,Computational modeling,Computer architecture,DelaysVehicle dynamics,Processor scheduling,Vehicular networks,mobile edge computing,computation offloading,queuing theory,optimization

    Abstract:Mobile edge computing (MEC) has been an effective paradigm for supporting computation-intensive applications by offloading resources at network edge. Especially in vehicular networks, the MEC server, is deployed as a small-scale computation server at the roadside and offloads computation-intensive task to its local server. However, due to the unique characteristics of vehicular networks, including high mobility of vehicles, dynamic distribution of vehicle densities and heterogeneous capacities of MEC servers, it is still challenging to implement efficient computation offloading mechanism in MEC-assisted vehicular networks. In this article, we investigate a novel scenario of computation offloading in MEC-assisted architecture, where task upload coordination between multiple vehicles, task migration between MEC/cloud servers and heterogeneous computation capabilities of MEC/cloud severs, are comprehensively investigated. On this basis, we formulate cooperative computation offloading (CCO) problem by modeling the procedure of task upload, migration and computation based on queuing theory, which aims at minimizing the delay of task completion. To tackle the CCO problem, we propose a probabilistic computation offloading (PCO) algorithm, which enables MEC server to independently make online scheduling based on the derived allocation probability. Specifically, the PCO transforms the objective function into augmented Lagrangian and achieves the optimal solution in an iterative way, based on a convex framework called Alternating Direction Method of Multipliers (ADMM). Last but not the least, we implement the simulation model. The comprehensive simulation results show the superiority of the proposed algorithm under a wide range of scenarios.

    Co-author:Penglin Dai,Kaiwen Hu,Xiao Wu,Huanlai Xing,Fei Teng,Zhaofei Yu

    Document Code:10.1109/TITS.2020.3017172

    Volume:23

    Issue:2

    Page Number:899-911

    ISSN No.:1524-9050

    Translation or Not:no

    Date of Publication:2022-02-16

    Included Journals:SCI

    Copyright © 2019 Southwest Jiaotong University.All Rights Reserved . ICP reserve 05026985
    Address:999 Xi'an Road, Pidu District, Chengdu, Sichuan, China
     Chuangongnet Anbei 510602000061
    Technical support: Office of Information Technology and network management
    Click:    MOBILE Version Login

    The Last Update Time : ..