xinghuanlai Associate Professor

Supervisor of Doctorate Candidates

Supervisor of Master's Candidates

  

  • Education Level: PhD graduate

  • Professional Title: Associate Professor

  • Alma Mater: 英国诺丁汉大学

  • Supervisor of Doctorate Candidates

  • Supervisor of Master's Candidates

  • School/Department: 计算机与人工智能学院

  • Discipline:Communications and Information Systems
    Computer Science and Technology
  • MORE>
    Recommended Ph.D.Supervisor Recommended MA Supervisor
    Language: 中文

    Paper Publications

    A compact genetic algorithm for the network coding based resource minimization problem.

    Impact Factor:1.853

    Affiliation of Author(s):Univ Nottingham

    Teaching and Research Group:Automated Scheduling Optimisat & Planning ASAP Gr

    Journal:Applied Intelligence

    Key Words:Compact genetic algorithm,Estimation of distribution algorithm,Multicast,Network coding

    Abstract:In network coding based data transmission, intermediate nodes in the network are allowed to perform mathematical operations to recombine (code) data packets received from different incoming links. Such coding operations incur additional computational overhead and consume public resources such as buffering and computational resource within the network. Therefore, the amount of coding operations is expected to be minimized so that more public resources are left for other network applications. In this paper, we investigate the newly emerged problem of minimizing the amount of coding operations required in network coding based multicast. To this end, we develop the first elitism-based compact genetic algorithm (cGA) to the problem concerned, with three extensions to improve the algorithm performance. First, we make use of an all-one vector to guide the probability vector (PV) in cGA towards feasible individuals. Second, we embed a PV restart scheme into the cGA where the PV is reset to a previously recorded value when no improvement can be obtained within a given number of consecutive generations. Third, we design a problem-specific local search operator that improves each feasible solution obtained by the cGA. Experimental results demonstrate that all the adopted improvement schemes contribute to an enhanced performance of our cGA. In addition, the proposed cGA is superior to some existing evolutionary algorithms in terms of both exploration and exploitation simultaneously in reduced computational time.

    Co-author:Huanlai Xing*,Rong Qu

    Volume:36

    Issue:4

    Page Number:809-823

    ISSN No.:0924-669X

    Translation or Not:no

    Date of Publication:2012-06-01

    Included Journals:SCI

    Copyright © 2019 Southwest Jiaotong University.All Rights Reserved . ICP reserve 05026985
    Address:999 Xi'an Road, Pidu District, Chengdu, Sichuan, China
     Chuangongnet Anbei 510602000061
    Technical support: Office of Information Technology and network management
    Click:    MOBILE Version Login

    The Last Update Time : ..