xinghuanlai Associate Professor

Supervisor of Doctorate Candidates

Supervisor of Master's Candidates

  

  • Education Level: PhD graduate

  • Professional Title: Associate Professor

  • Alma Mater: 英国诺丁汉大学

  • Supervisor of Doctorate Candidates

  • Supervisor of Master's Candidates

  • School/Department: 计算机与人工智能学院

  • Discipline:Communications and Information Systems
    Computer Science and Technology
  • MORE>
    Recommended Ph.D.Supervisor Recommended MA Supervisor
    Language: 中文

    Paper Publications

    Network Traffic Prediction Based on LSTM Networks With Genetic Algorithm

    DOI number:10.1007/978-981-13-7123-3

    Journal:ICSINC 2018

    Place of Publication:Yuzhou, PEOPLES R CHINA

    Key Words:Genetic algorithm,Long short-term memory recurrent neural networks,Network traffic prediction

    Abstract:Network traffic prediction based on massive data is a precondition of realizing congestion control and intelligent management. As network traffic time series data are time-varying and nonlinear, it is difficult for traditional time series prediction methods to build appropriate prediction models, which unfortunately leads to low prediction accuracy. Long short-term memory recurrent neural networks (LSTMs) have thus become an effective alternative for network traffic prediction, where parameter setting influences significantly on performance of a neural network. In this paper, a LSTMs method based on genetic algorithm (GA), GA-LSTMs, is proposed to predict network traffic. Firstly, LSTMs is used for extracting temporal traffic features. Secondly, GA is designed to identify suitable hyper-parameters for the LSTMs network. In the end, a GA-LSTMs network traffic prediction model is established. Experimental results show that compared with auto regressive integrated moving average (ARIMA) and pure LSTMs, the proposed GA-LSTMs achieves higher prediction accuracy with smaller prediction error and is able to describe the traffic features of complex changes.

    Co-author:Juan Chen,Huanlai Xing*,Hai Yang,Lexi Xu

    Document Code:10.1007/978-981-13-7123-3_48

    Volume:550

    Page Number:411-419

    Translation or Not:no

    Date of Publication:2018-12-01

    Copyright © 2019 Southwest Jiaotong University.All Rights Reserved . ICP reserve 05026985
    Address:999 Xi'an Road, Pidu District, Chengdu, Sichuan, China
     Chuangongnet Anbei 510602000061
    Technical support: Office of Information Technology and network management
    Click:    MOBILE Version Login

    The Last Update Time : ..