王红军 研究员

博士生导师

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Fast Flexible Bipartite Graph Model for Co-Clustering

影响因子:9.235

DOI码:10.1109/TKDE.2022.3194275

所属单位:西南交通大学

发表刊物:IEEE Transactions on Knowledge and Data Engineering

刊物所在地:UNITED STATES

关键字:Co-clustering, Bipartite graph partition, Faster performance, Flexibility;

摘要:Co-clustering methods make use of the correlation between samples and attributes to explore the co-occurrence structure in data. These methods have played a significant role in gene expression analysis, image segmentation, and document clustering. In bipartite graph partition-based co-clustering methods, the relationship between samples and attributes is described by constructing a diagonal symmetric bipartite graph matrix, which is clustered by the philosophy of spectral clustering. However, this not only has high time complexity but also the same number of row and column clusters. In fact, the number of categories of rows and columns often changes in the real world. To address these problems, this paper proposes a novel fast flexible bipartite graph model for the co-clustering method (FBGPC) that directly uses the original matrix to construct the bipartite graph. Then, it uses the inflation operation to partition the bipartite graph in order to learn the co-occurrence structure of the original data matrix based on the inherent relationship between bipartite graph partitioning and co-clustering. Finally, hierarchical clustering is used to obtain the clustering results according to the set relationship of the co-occurrence structure. Extensive empirical results show the effectiveness of our proposed model and verify the faster performance, generality, and flexibility of our model.

合写作者:Zhiguo Long,李天瑞

第一作者:Wei Chen

论文类型:学术论文

通讯作者:Hongjun Wang

学科门类:工学

一级学科:计算机科学与技术

页面范围:6930-6940

ISSN号:1041-4347

是否译文:

发表时间:2023-07-27