王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Bilateral discriminative autoencoder model orienting co-representation learning

影响因子:8.139

DOI码:10.1016/j.knosys.2022.108653

所属单位:西南交通大学

发表刊物:Knowledge-Based Systems

刊物所在地:NETHERLANDS

关键字:Representation learning,Autoencoder,Co-clustering,Self-supervised learning

摘要:Autoencoder is an important representation learning model which has attracted extensive research attention. However, an autoencoder learns latent representation by reducing reconstruction error without emphasis on discrimination, which is vital to downstream machine learning tasks like classification and clustering. Many existing works have improved the discrimination of autoencoders. But as far as we know, there is no work focusing on bilateral discriminative representation learning(i.e. co-representation learning). Our work unlocks the potential of autoencoder on co-representation learning and proposes a bilateral discriminative autoencoder model for co-representation learning(CRBDAE). By utilizing a fuzzy set, the topological relationship between samples and features is represented as fuzzy information. In the bilateral discriminative autoencoder, by means of regularization, fuzzy information is employed to enhance the self-supervised co-representation learning ability. Thus, the corresponding loss function is illustrated. We also inferred the parameters updating method and proposed the model training algorithm. Finally, the availability of the CRBDAE model was demonstrated on 12 datasets and the results proved that the performance of the proposed model meets our expectations.

合写作者:Wei Chen, Luqing Wang,李天瑞

第一作者:Zehao Liu

论文类型:学术论文

通讯作者:Hongjun Wang

学科门类:工学

一级学科:计算机科学与技术

卷号:Volume 245

期号:2022,108653,

页面范围:108653

ISSN号:0950-7051

是否译文:

发表时间:2022-05-23