硕士生导师
个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
办公地点:犀浦3号教学楼31529
毕业院校:四川大学
学科:电子信息. 软件工程. 计算机应用技术
所在单位:计算机与人工智能学院
报考该导师研究生的方式
欢迎你报考王红军老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。
4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
Linear discriminant analysis guided by unsupervised ensemble learning
影响因子:8.233
DOI码:10.1016/j.ins.2018.12.036
所属单位:西南交通大学
发表刊物:Information Sciences
刊物所在地:UNITED STATES
摘要:The high dimensionality and sparsity of data often increase the complexity of clustering; these factors occur simultaneously in unsupervised learning. Clustering and linear discriminant analysis (LDA) are methods to reduce the dimensionality and sparsity of data. In this study, the similarity of clustering and LDA are investigated based on their objective functions. Subsequently, their objective functions are integrated, and an LDA guided by an unsupervised ensemble learning (LDA–UEL) model is proposed. To create the proposed model, fuzziness F is designed to measure the confidence of unsupervised learning and the inference of the proposed model is illustrated. Furthermore, a corresponding algorithm for the inference is designed. Finally, extensive experiments are designed, and the results thus obtained demonstrate the effectiveness and high performance of the LDA–UEL model.
合写作者:李天瑞, Shi-Jinn Horng, Xinwen Zhu
第一作者:Ping Deng
论文类型:学术论文
通讯作者:Hongjun Wang
论文编号:20185206304815
学科门类:工学
一级学科:计算机科学与技术
卷号:Volume 480
期号:April 2019
页面范围:Pages 211-221
ISSN号:0020-0255
是否译文:否
发表时间:2018-12-21