王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Semi-Supervised Evolutionary Ensembles for Web Video Categorization

影响因子:8.139

DOI码:10.1016/j.knosys.2014.11.030

所属单位:西南交通大学

发表刊物:Knowledge-Based Systems

刊物所在地:NETHERLANDS

关键字:Genetic algorithmSemantic similarityClustering ensembleSocial media miningVideo categorization

摘要:Evolutionary Algorithms (EA) have been developing rapidly as a powerful and general learning approach which has been used successfully to find a reasonable solution for data mining and knowledge discovery. Genetic algorithm (GA) is a kind of mainstream EA paradigm with a purpose of developing solutions for optimization problems. Clustering ensembles have emerged as an outstanding algorithm in machine learning to leverage the consensus across multiple clustering solutions and combines their predictions into a single solution with improved robustness, stability and accuracy. Multimedia advancement and popularity of the social Web has collectively provided an easy way to generate bulk of videos. Categorization of such Web videos has become a hot research challenge. In this paper, we propose a Semi-supervised Evolutionary Ensemble (SS-EE) framework for social media mining, e.g., Web Video Categorization (WVC), using their low cost textual features, intrinsic relations and extrinsic Web support. The contributions of this research work are as follows. First, we extend the traditional Vector Space Model (VSM) to Semantic VSM (S-VSM) by considering the semantic similarity between the feature terms using Normalized Google Distance (NGD) approach. Second, we define a new distance measure, Triangular Similarity (TrS) between two Textual Feature Vectors (TFV) based on the frequencies of most relevant terms in each category. Third, we iterate the clustering ensemble process with the help of GA guided by a new measure, Pre-Paired Percentage (PPP), to be used as the fitness function during the genetic cycle. Fourth, in the key steps of the GA, crossover and mutation genetic operators, we define them by an intelligent mechanism of clustering ensemble. Fifth, in order to terminate the genetic cycle, we define another new measure, Clustering Quality (Cq), based on similarity matrix and clustering labels. Experiments on real world social-Web data (YouTube) have been performed to validate the SS-EE framework.

合写作者:YanYang,HongjunWang,MehtabAfzal

第一作者:Amjad Mahmood

论文类型:学术论文

通讯作者:TianruiLi

论文编号:20150800547968

学科门类:工学

一级学科:计算机科学与技术

卷号:Volume 76

页面范围:53-66

ISSN号:0950-7051

是否译文:

发表时间:2014-12-15