硕士生导师
个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
办公地点:犀浦3号教学楼31529
毕业院校:四川大学
学科:电子信息. 软件工程. 计算机应用技术
所在单位:计算机与人工智能学院
报考该导师研究生的方式
欢迎你报考王红军老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。
4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
Bayesian image segmentation fusion
影响因子:8.139
DOI码:10.1016/j.knosys.2014.07.021
所属单位:西南交通大学
发表刊物:Knowledge-Based Systems
刊物所在地:NETHERLANDS
关键字:Bayesian modelImage segmentation fusionVariational inferenceGeneration modelExpectation maximization
摘要:Image segmentation fusion can output a final consensus segmentation which in general is better than those of unsupervised image segmentation algorithms. In this paper, the image segmentation fusion is firstly formalized as a combinatorial optimization problem in terms of information theory. Then a Bayesian image segmentation fusion (BISF) model is proposed for a good consensus segmentation. We treat all the segmentation algorithms (or the same algorithm with different parameters) as new features and the segmentations of algorithms as values of the new features, which simplifies image segmentation fusion problems in computation complexity. Based on this idea, a generative model BISF is designed to sample the segmentation according to the discrete distribution, and the inference for BISF and the corresponding algorithm are illustrated in detail. At last, extensive empirical results demonstrate that BISF significantly outperforms other image segmentation fusion algorithms and the popular image segmentation algorithms or algorithms with different parameters in terms of popular indices.
合写作者:Yinghui Zhang,RuihuaNie,YanYang,BoPeng,TianruiLi
第一作者:Hongjun Wang
论文类型:学术论文
通讯作者:HongjunWang
论文编号:20144300128196
学科门类:工学
一级学科:计算机科学与技术
卷号:Volume 71
页面范围:162-168
ISSN号:0950-7051
是否译文:否
发表时间:2014-08-19