王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Deep Belief Networks Oriented Clustering

DOI码:10.1109/ISKE.2015.8

所属单位:西南交通大学

发表刊物:2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)

刊物所在地:Taipei, Taiwan

关键字:deep learning, unsupervised learning, deep belief network, clustering, fuzzy c-means

摘要:Deep learning has been popular for a few years, and it shows great capability on unsupervised leaning of representation. Deep belief network consists of multi layers of restricted Boltzmann machine(RBM) and a deep auto-encoder, which uses a stack architecture learning feature layer by layer. The learning rule is that one deeper layer learns more complex representations, which are the high level features of the input data, from the representations learnt by the layer before. Fuzzy C-Means(FCM) is one of the most popular clustering algorithms, which allows one piece of data belong to several clusters. In this paper the authors propose a novel clustering model, and introduce a novel clustering technique(DBNOC) which combines deep belief network and fuzzy c-means. The main idea is that: first, it clusters with the high level representations learnt by stacked RBM to produce the initial cluster center, then it uses the fine-tune step including one center holding clustering algorithm and deep auto-encoder to optimize the cluster center and membership between input data and every cluster by cross iteration. The authors use FCM clustering algorithm to fulfill the model and do experiment on both low dimensional datasets and high dimensional datasets. The experiment results suggest that the proposed deep belief network oriented clustering method is better than the standard K-Means and FCM algorithm on the test datasets. Even on high dimensional datasets, the DBNOC clustering method show more generalization. What's more, the proposed model is suitable both in theoretical and practical.

合写作者:李天瑞, Yan Yang

第一作者:Qi Yang

论文类型:学术论文

通讯作者:Hongjun Wang

论文编号:20162002387658

学科门类:工学

一级学科:计算机科学与技术

页面范围:58-65

ISSN号:978-1-4673-9323-2

是否译文:

发表时间:2015-12-24