王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Constraint projections for semi-supervised affinity propagation

影响因子:8.139

DOI码:10.1016/j.knosys.2012.05.011

所属单位:西南交通大学

发表刊物:Knowledge Based System

刊物所在地:NETHERLANDS

关键字:Affinity propagationSemi-supervised affinity propagationConstraint projections

摘要:Affinity propagation (AP) is introduced as an unsupervised learning algorithm for exemplar-based clustering. A few methods are stated to extend the AP model to account for semi-supervised clustering. In this paper, constraint (cannot-link and must-link) projections are illustrated for semi-supervised AP (CPSSAP), a hierarchical semi-supervised clustering algorithm. It is flexible for the relaxation of some constraints during the learning stage. First, the data points of instance-level constraints and other data points are together projected in a lower dimensional space guided by the constraints. Then, AP is performed on the new data points in the lower dimensional space. Finally, a few datasets are chosen for experimentation from the UCI machine learning repository. The results show that CPSSAP performs better than some existing algorithms. Furthermore, visualizations of the original data and data after the projections show that the data points overlap less after the constraint projections of the datasets.

合写作者:Xingnian Liu,李天瑞

第一作者:Hongjun Wang

论文类型:学术论文

通讯作者:Ruihua Nie

论文编号:20124415613756

学科门类:工学

一级学科:计算机科学与技术

卷号:Vol.36,

期号:Issue 8

页面范围:pp 315-321

ISSN号:0950-7051

是否译文:

发表时间:2012-06-07