硕士生导师
个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
办公地点:犀浦3号教学楼31529
毕业院校:四川大学
学科:电子信息. 软件工程. 计算机应用技术
所在单位:计算机与人工智能学院
报考该导师研究生的方式
欢迎你报考王红军老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。
4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
Region of interest extraction for finger vein images with less information losses
影响因子:2.577
DOI码:10.1007/s11042-016-4285-2
所属单位:西南交通大学
发表刊物:Multimedia Tools and Applications
关键字:Biometric recognition . Finger vein recognition . Region of interest . Finger vein image
摘要:Automatic finger vein recognition systems have attracted more attentions in recent years. In order to implement a high performance system, an important step is to localize the region of interest accurately. A problem in previous ROI localization methods is that some useful finger vein information is lost in the final cropped ROI region. In order to resolve this problem, a novel ROI extraction method for finger vein images is proposed in this paper. Finger edges are detected and adjusted to the horizontal direction, after that a modified sliding window is used in order to detect the distal inter-joint line of the finger. On the basis of the edges and the distal inter-phalangeal joint line of the finger, different from previous methods, an outer rectangle is used to crop the finger area to avoid the useful information loss. Based on our experimental dataset with 3132 finger vein images, the mean information loss rate for previous methods is 15.1% and there is no loss of information for our method. In order to evaluate the accuracy of our ROI extraction method, the similarity rate of intra-class is calculated, which is defined by the ratio of overlap area and the whole ROI area. And a mean similarity rate 96.3% is obtained in our experiments. Theoretical analysis and experimental results show that the proposed method is effective and accurate, and it is potentially beneficial for improving the performance of finger vein recognition system.
合写作者:Dongming Tang
第一作者:Mingwen Wang
论文类型:学术论文
通讯作者:Mingwen Wang
论文编号:20165203196233
学科门类:工学
一级学科:计算机科学与技术
卷号:76
页面范围:14937–14949
ISSN号:1380-7501
是否译文:否