Liu Ying
Lecturer (higher education)
![]() |
Supervisor of Master's Candidates
- Master Tutor
- Gender:Female
- Date of Employment:2023-07-04
- Education Level:PhD graduate
- Degree:Doctor of management
- Business Address:0429,Teaching Building No.1, Jiuli Campus
- Professional Title:Lecturer (higher education)
- Status:在岗
- Academic Titles:助理教授
- Alma Mater:Nanjing University
- Supervisor of Master's Candidates
- School/Department:School of Economics and Management
- Discipline:Management Science and Engineering

- PostalAddress:
- Email:
- Paper Publications
Minimizing the maximum flow loss in the network maintenance scheduling problem with flexible arc outages
- DOI number:10.1016/j.ejor.2025.07.056
- Journal:European Journal of Operational Research
- Key Words:Scheduling, Network maintenance scheduling, Arc outage, Flow loss, Benders decomposition
- Abstract:本文研究网络维护调度问题,该问题需要在灵活时间窗口内对网络弧段执行维护任务。维护期间弧段将中断通行,无法传输流量。此类弧段中断会导致流量损失,进而影响网络容量和服务能力。对于某些依托网络运行的公共服务而言,可能出现的服务中断及严重流量损失会带来极端风险,这通常是不可接受的。本研究旨在寻找可行的维护任务调度方案,以最小化规划周期内的最大流量损失。我们针对该问题提出了混合整数规划模型和Benders重构模型,设计了基于分支切割框架的Benders分解算法。通过引入强化初始割和有效割来缩减可行域,从而加速精确算法的求解效率。此外,还提出了高效分离程序以生成Benders最优割。基于电信网络的基准实例和模拟实例进行了计算实验,结果表明:相比直接采用求解器处理原模型及现有针对相关问题的Benders分解算法,我们的算法性能显著提升。最优调度方案能够有效降低因网络大流量损失引发的极端风险。鉴于可能存在多个最优解,采用分层优化方法进一步筛选理想调度方案——或最小化总流量损失,或最小化最大流量损失的持续时间。经过适应性调整,我们的算法在两个扩展问题中也表现出良好性能。
- Indexed by:SCI
- Translation or Not:no
- Date of Publication:2025-09-01
- Included Journals:SCI