· Paper Publications

Current position: Home > Research > Paper Publications

基于改进迁移学习的高速铁路短期客流时间序列预测方法

Journal: 系统工程

Key Words: 高速铁路; 客流预测; 时间序列; 迁移学习;

Abstract: 高速铁路短期客流的预测能为客票分配、开行方案制定、车站客运组织等运营层面组织工作服务,以提高运力资源配置效率和运输服务水平。针对该预测工作往往缺乏有效样本、难于处理时间序列的非稳态性等难点,本文提出一种基于改进迁移学习的高速铁路短期客流预测方法。该迁移学习算法是在经典提升(Boost)算法基础上,结合时间序列特征所提出的。首先,通过时间序列的初筛机制得到源域时间序列与目标域时间序列的距离,并获取与目标域时间序列更相似的源域时间序列。然后,通过将整体时间序列分解为线性时间序列和非线性时间序列,采用季节性差分自回归移动平均模型进行线性拟合后,获取非线性时间序列作为初始源数据集合。最后,通过对训练样本和随机森林回归模型的权重调整实现多样本的迁移,能有效降低负迁移,提升算法稳定性。并以某铁路局客票数据为例进行高速铁路客运量预测及验证,结果表明改进迁移学习都能有效提升预测精度,证明该方法能高效地运用于实际的高速铁路短期客流预测中,有利于提升运力资源配置效率和高速铁路运输服务水平。

Co-author: 赵国堂,Jian Ma

First Author: 闻克宇

Indexed by: Journal articles

Correspondence Author: 何必胜

Document Type: J

Volume: 38

Issue: 03

Page Number: 73-83

Translation or Not: no

Date of Publication: 2020-05-11