曹云刚 教授

博士生导师

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:西南交通大学犀浦校区地球科学与工程学院 X4139

毕业院校:西南交通大学

学科:测绘科学与技术

所在单位:地球科学与工程学院

报考该导师研究生的方式

欢迎你报考曹云刚老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择曹云刚老师,你的所有申请信息将发送给曹云刚老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请曹云刚老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为曹云刚老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考曹云刚老师招收的专业和方向,进入复试后提交导师意向时选择曹云刚老师。

4、如果你有兴趣攻读曹云刚老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

IBCO-Net: Integrity-Boundary-Corner Optimization in a General Multistage Network for Building Fine Segmentation From Remote Sensing Images

DOI码:10.1109/TGRS.2023.3310534

发表刊物:IEEE Transactions on Geoscience and Remote Sensing

摘要:Building extraction is a significant topic in high-resolution remote sensing. Insufficient integrity, irregular boundaries, and inaccurate corners remain a problem for existing methods. However, individually optimizing one of these aspects may leave problems in others. Unfortunately, few methods consider integrity, boundary, and corner simultaneously. In this study, we propose a three-stage network [integrity-boundary-corner optimization in a general multistage network (IBCO-Net)] incorporating integrity-boundary-corner optimization for fine segmentation of buildings. First, long-range dependent and spatial-continuous (LDSC) blocks are plugged into the decoder to enhance building integrity. Second, the direction field correction module (DFCM) controls the overall shape of the building by learning the direction field and executing an iterative correction algorithm. Finally, the multistrategy point refinement module (MSPRM) selects boundary and corner points for reclassification to further refine the boundary and relocate corners, and a hybrid loss function supervises IBCO-Net to optimize each stage. Comparative experiments were conducted on three datasets: the Massachusetts building dataset, the ISPRS Potsdam dataset, and the dataset of building instances of typical cities in China. We evaluated common pixel-level metrics and object-level boundary and corner metrics, with experimental results showing that IBCO-Net outperforms eight state-of-the-art convolution neural network (CNN) and transformer-based methods. In addition, the generality of the proposed method is demonstrated via its performance by applying nine existing backbone networks.

卷号:61

页面范围:1-19

是否译文:

发表时间:2023-08-31

收录刊物:SCI