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1 Chain complexes and their Homology
1.1 Consider a commutative diagram of vectors spaces and linear maps

with exact rows. Suppose that f4 is injective, f1 is surjective and f2
is injective. Show that f3 is injective. Suppose that f2 is surjective,
f4 is surjective and f5 is injective. Show that f3 is surjective. In par-
ticular, we have that if f1, f2, f4 and f5 are isomorphisms, then f3 is an
isomorphism. (This assertion is called the 5-lemma.)

Proof. (idea: diagram chasing) We only need to prove the first statement since the other two can be
solved using similar method. Set x ∈ A3 such that f3(x) = 0. the only thing we need to do is to examine
whether x = 0 holds. Using property of commutative diagram, we obtain b3(f3(x)) = 0 = f4(a3(x)).
f4 is injective, so a3(x) = 0, or x ∈ Kera3 = Ima2. There exists a element x′ ∈ A2 such that
a2(x

′) = x and f3(a2(x
′)) = b2(f2(x

′)) = 0 which means f2(x
′) ∈ Kerb2 = Imb1. So there’s also

x′′ ∈ B1 satisfying that b1(x
′′) = f2(x

′). While f1 is surjective, we can find an element x′′′ ∈ A1 such
that f1(x

′′′) = x′′ and b1(f1(x
′′′)) = f2(a1(x

′′′)) holds for sure. Because f2 is an injection, so we can
obtain x′ = a1(x

′′′) and finally, x = a2(x
′) = a2(a1(x

′′′)) = 0.

1.2 Consider the following commutative diagram where the rows are exact
sequences. Show that there exists a exact sequence

0 → Kerf1 → Kerf2 → Kerf3 → Cokf1 → Cokf2 → Cokf3 → 0.

Proof. Construction of the long exact sequence is actually called the Snake Lemma and proof of this
profound lemma is done by three steps. First, show that 0 → Kerf1 → Kerf2 → Kerf3 is exact.
Second, prove that Cokf1 → Cokf2 → Cokf3 → 0 is also exact and this procedure is similar to the
first step which is relatively easy. The last as well as hardest step is to construct a homomorphism
from Kerf3 to Cokf1. You can see precise proof from any textbook concerning about category theory.

2 Homotopy
2.1 Show that ”homotopy equivalence” is an equivalence relation in topo-

logical spaces.
Proof. Just need to prove that ”homotopy equivalence” is reflexice, symmetric and transitive. (1) It’s
trivial that homotopy equivalence relation is reflexice (We can let the continuous map F (x, t) = f(x).)
(2) If F (x, t) is a homotopy from f0 to f1, we can simply let another continuous map G(x, t) = F (x, 1−t)
which is a homotopy from f1 to f1 inversely. (3) Let F (x, t) is a homotopy from f0 to f1, and G(x, t) is
another homotopy from f1 to f2. To prove the relation is transitive, we need to construct a homotopy
from f0 to f2 which can be written as

H(x, t) =


F (x, 2t), 0 ≤ t ≤ 1

2

G(x, 2t− 1),
1

2
≤ t ≤ 1

(1)

1



We can obtain that ”homotopy equivalence” is an equivalence relation.

2.2 Show that all continuous maps f : U → V that are homotopic to a
constant map induce the 0-map f ∗ : Hp(V ) → Hp(U) for p > 0.

Proof. Since f : U → V that are homotopic to a constant map which has a equivalent statement
saying that the map is homotopic to identity map id. Using the same construction in the proof of the
Poincaré Lemma,
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3 Exercise by ZHĀNG BóYuǎn
7.3. Show that there is no continuous map g :Dn→Sn−1 with g |Sn−1' idSn−1 .

Proof.
Assume that n≥ 2.
For the map r :Rn\{0} → Rn\{0},r(x) = x

∥x∥ ,we get that idRn\0,because
Rn\0 always cotains the line segment vetween x and r(x).
If g is of the indicated type,then g(t · r(x)),0 ≤ t ≤ 1 defines a homotopy
from a constant map to r.
This shows that Rn\{0} is contractible.
Since Hn−1(Rn\{0}).
This contradicts Poincar Lemma.

8.2. Let φ : N→ M be a continuous map from a smooth manifold N to
a smooth submanifold M of Rk. Let i:M→ Rk be the inclusion. Show that
φ is smooth if and only if i◦φ is smooth.
Proof.
Assume that φ = (φ1, · · · , φm), φs ∈ C∞(N), s = 1, · · · ,m. i.e. φ is smooth.
And since i = (x1, · · · , xm, 0, · · · , 0).
Then i ◦ φ = (φ1, · · · , φm, 0, · · · , 0) is smooth.
Assume that i ◦ φ = (f1, · · · , fk), fs ∈ C∞(M), s = 1, · · · , k. i.e. i ◦ φ is
smooth.
And we have map p : Rk → M, (x1, · · · , xk) 7→ (x1, · · · , xm),
notice that f1 = φ1, · · · , fm = φm,
therefore φ = p ◦ i ◦ φ is smooth.

8.6. Let p0 ∈ Sn be the ”north pole” p0 = (0, · · · , 0, 1).Show that Sn\{p0}
is deffeomorphic to Rn under stereographic projection, i.e. the
map Sn\{0} → Rn that carries p ∈ Sn into the point of intersection between
the line through p0 and p and the equatorial hyperplane Rn ⊆ Rn+1.
Proof.
∀p∈ Sn,assume p = (x1, · · · , xn, xn+1).
And assume q = (y1, · · · , yn) is the corresponding point of p.
Then we have y1

x1
=· · · = yn

xn
= 1

1−xn+1
,

therefore yi =
xi

1−xn−1
,i = 1, · · · , n.

Because p ∈ Sn,x2
1 + · · ·+ x2

n+1 = 1,
therefore y21 + · · ·+ y2n= x2

1+···+x2
n

(1−xn+1)2
= 1−x2

n+1

(1−xn+1)2
= 1+xn+1

1−xn+1
,

then compute and we know that xn+1=
∑n

i=1 y2
i−1∑n

i=1 y2
i+1

,
therefore xi= 2yi∑n

i=1 y2
i−1

,which means that Sn\{p0} is deffeomorphic to Rn.
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4 Exercise by xu yi
2.7. Show for g : V → W that

Altp+q(f)(ω1 ∧ ω2) = Altp(f)(ω1) ∧Altq(f)(ω2)

, where ω1 ∈ Altp(W ), ω2 ∈ Altq(W ).

Proof.Altp+q(f)(ω1 ∧ ω2)(ξ1, ξ2, · · · , ξp+q)
= (ω1 ∧ ω2)(f(ξ1), f(ξ2), · · · , f(ξp+q))
=

∑
σ∈S(p,q)

sign(σ)ω1(f(ξσ(1)), f(ξσ(2)), · · · , f(ξσ(p)))ω2(f(ξσ(p+1)), f(ξσ(p+2)), · · · , f(ξσ(p+q)))

=
∑

σ∈S(p,q)
sign(σ)Altp(f)ω1(ξσ(1), · · · , ξσ(p))Altq(f)ω2(ξσ(p+1), · · · , ξσ(p+q))

= (Altp(f)(ω1) ∧Altq(f)(ξ1, ξ2, · · · , ξp+q)
therefore Altp+q(f)(ω1 ∧ ω2) = Altp(f)(ω1) ∧Altq(f)(ω2).

2.10. Let V be a 4-dimensional vector space and ϵ1, · · · , ϵ4 a basis of Alt1(V ).Let A = (aij) be a
skew-symmetric matrix and define

α =
∑
i<j

aijϵi ∧ ϵj .

Show that α ∧ α = 0 ⇔ det(A) = 0. Say α ∧ α = λϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4.What is the relation between
λanddet(A)?

Proof.A = (aij) be a skew-symmetric matrix
aii = 0, aij = −aji, i 6= j
α ∧ α = (a12a34 − a13a24 + a14a23 + a23a14 − a24a13 + a34a12)ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4
= 2(a12a34 − a13a24 + a14a23)ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4
det(A) = (a12a34 − a13a24 + a14a23)

2

α ∧ α = 0 ⇔ a12a34 − a13a24 + a14a23 = 0 ⇔ det(A) = 0.
and if α ∧ α = λϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 , then det(A) = (λ2 )

2.

5.3.Can R2 be written as R2 = U ∪ V where U, V are open connected sets such that U ∩ V is
disconnected?

Proof. U, V are open connected sets ,hence

Hp(U) =

{
R p = 0

0 p > 0
(2)

Hp(V ) =

{
R p = 0

0 p > 0
(3)

Hp(R2) =

{
R p = 0

0 p > 0
(4)

by the poincare lemma.
From the Mayer-Vietoris sequence we have

0 → H0(R2)I∗→H0(U)⊕H0(V )J∗
→H0(U ∩ V )δ∗→H1(R2) → · · ·

.
Therefore H0(U ∩ V ) = ImJ∗ = H0(U) ⊕ H0(V )/KerJ∗ = R ⊕ RImI∗ = R ⊕ R/R = R,U ∩ V is
connected .
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