From Calculus to Cohomology

Homework 3

Exercise 1. Prove the Cartan lemma.

Exercise 2. Let V be an n-dimensional vector space with inner product \langle,$\rangle . A volume element of V$ is a unit vector vol $\in A l t^{n}(V)$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V with $\operatorname{vol}\left(e_{1}, \ldots, e_{n}\right)=$ 1 , and $\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$ the dual basis of $A l t^{1}(V)$. Define the Hodge star operator $*: A l t^{p}(V) \rightarrow A l t^{n}$ ${ }^{-p}(V)$ as a linear map determined by

$$
*\left(\epsilon_{\sigma(1)} \wedge \ldots \wedge \epsilon_{\sigma(p)}\right)=\operatorname{sgn}(\sigma) \epsilon_{\sigma(p+1)} \wedge \ldots \wedge \epsilon_{\sigma(n)}
$$

for any $\sigma \in S(p, n-p)$. Show that the composition $* \circ *: A l t^{p}(V) \rightarrow A l t^{p}(V)$ is simply a multiplication by $(-1)^{p(n-p)}$.

