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• Review of GLSM and Kähler quotient


• Quiver varieties


• Dualities as cluster mutations


• Positive GLSM quiver and infinite chain of dualities


• Kronecker quiver


• Markov quiver


• Abelian necklace quiver and 2d SQCD


• Coulomb branch analysis
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For the math audience, the goal is to draw attention to (unframed) quiver varieties as 
interesting objects to study Gromov-Witten theory.


For the physics audience, the goal is to present a connection between abelian quiver 
gauge theories and nonabelian theories in 2d.
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Kähler Moduli and Cluster Algebra

• 2d quiver GLSM provide an important class of 
Kähler quotient construction of quiver varieties


• In gauge theory, it is natural to think of a quiver 
gauge group with physical parameters as cluster 
variables.


• By studying dualities, We found a surprising 
cluster algebra structure on the Kähler moduli 
space

Nonabelian Gauged Linear Sigma Model 981

for N ≥ k + 3,

USp(k)⇔ USp(N − k − 1).

Furthermore, the preceding duality interchanges the geometric/weakly coupled phase with

the Artin/strongly coupled phase.

5.2 Global Seiberg duality

The global case can be cast into operations on quiver diagrams. A beautiful example by

Benini-Park-Zhao is mutation for U(n) quivers. Cases other than U(n) have not yet been

worked out.

We restrict ourselves to the case where the gauge group at each gauge node is GL(N). For

these quiver varieties, the only additional data beyond the quiver diagram is the rank N for

each node.

Suppose that k is a node with dimension Nk and no 1-cycles or 2-cycle involving k. Let

i1, · · · , il be the incoming nodes that have an arrow starting at ij and ending at k. Let aj be

the number of arrows between ii and k. We define Nin =
∑
j
ajNj . In a similar fashion, we can

also consider outgoing nodes and define Nout. Assume max{Nin, Nout} > Nk. A mutation at a

gauge node k consists of the following steps:

Step 1 For each “path” (a sequence of two arrows) i→ k → j passing through k, add an

arrow i→ j (denoted by i
k→ j). Moreover, the R-charge on i

k→ j is the sum of R-charges on

i→ k and k → j. Suppose that we have a cycle containing this path in the superpotential W .

We have a new cycle of the same degree to replace i→ k → j by i
k→ j.

Step 2 We replace Nk by N ′
k = max{Nin, Nout}−Nk.

Step 3 Invert the direction of all arrows that start or end at k (denoted by (i→ k)∗, (k → j)∗).

Furthermore, introduce a cubic term of superpotential for the cycle i
k→ j, (k → j)∗, (i → k)∗

by assigning the R-charge of 1
2 of the old R-charge for arrows (k → j)∗, (i→ k)∗.

Remark 5.1 Usually, the mutation is performed for so-called cluster quiver which has no

1-cycles or 2-cycles. We also require the removal of a pair of opposite arrows between two

vertices to kill all possible 2-cycles. If we start from a potential containing appropriate cubic

terms, the new potential may have some quadratic term. The last step can be realized as

the restriction to the critical locus of quadratic terms of new superpotential. The GLSM is

equivalent to its restriction on the critical locus of the quadratic terms of the superpotential.

Furthermore, mutation is closely related to the cluster algebra.

We apply Fan-Jarvis-Ruan’s theory to quiver varieties, before and after mutations, to obtain

their generating functions F bf
g ,F af

g . Recall that we have a quantum variable qi for each vertex.

Benini-Park-Zhao’s physical analysis suggests the following mathematical conjecture.

Mutation Conjecture F bf
g and F af

g are equivalent up to the change of variables

q̃i =

{
q−1
k , if i = k,
qiq|aki|(qk + 1)−aki , if Otherwise, Ruan ‘17

• In the first part of the talk, I will review the physical 
analysis that lead to a precise mathematical conjecture

Benini-Park-PZ ‘14

3/29



• In any quantum field theory (or physical system, the central object is the space of ground 
states, or vacua.


• We are interested in gauged linear sigma models defined by a gauge group and chiral fields.


• Consider the U(1) theory with  chirals, with potential 




• If , then  and the Higgs branch vacua is geometrically 





• If , then  and , and we have the Coulomb branch vacua (more on this later)


• In the  limit, the GLSM is believed to flow to a nonlinear sigma model whose target 
space is the classical Higgs branch


n

U =
n

∑
i=1

|σ |2 |ϕi |
2 + e2

2 (
n

∑
i=1

|ϕi |
2 − r)

2

r > 0 ϕ ≠ 0 ℂℙn−1 = S2n−1/U(1)

ℂℙn−1 = {(ϕ1, …, ϕn) ∈ ℂn |
n

∑
i=1

|ϕi |
2 = r}/U(1)

r = 0 ϕ = 0 σ ≠ 0

e → ∞

GLSM and Kähler quotient

Witten ‘93
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• This provides a large class of Kähler quotient manifolds such as Grassmannians, toric 
varieties and determinant Calabi-Yau’s.


• One can also introduce superpotentials, that engineer hypersurfaces in toric varieties.


• It is useful to introduce a quiver notation. A quiver is a directed graph with nodes and arrows.  


• A circle node represents a gauge group U(k), a square (frame) node represents a flavor group 
U(n) and an arrow represents a field ϕα

i ∈ Mat(ℂk, ℂn)

GLSM and Kähler quotient

ℂℙN−1 = S2N−1/U(1)
n

∑
i

|ϕi |
2 = r

n

∑
i

ϕα
i ϕβ

i = rδαβ

Space of -planes in k ℂN

1 n
r

k n
r

Gr(k, N )

Kähler parameter
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Quiver varieties

• It is natural to consider quiver gauge theories with multiple Kähler parameters


• The mathematical framework is quiver varieties


• Assign a gauge group GL( ) to each gauge node


• Each arrow defines a vector space 


•  modulo the gauge group 


• The adjoint action on  induces a momentum map  


• The quiver variety is the GIT quotient  


Example: Flag variety

Ni

ℂNi×Nj

V = ⨁
i→j∈Q1

ℂNi×Nj G : ∏
gauge nodes

GL(Ni)

G μ : V → **

μ−1(ri)//G See e.g. Kirillov’s textbook

N1 N2 N3
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i k j i k′ j

Quiver mutations
• There is a local operation on a quiver known as mutation 

on the  node


• Reverse arrows emanating from 


• For each path  passing through , add an 
arrow  


• Remove pairs of arrows forming a 2-cycle


• A GLSM quiver has additional data: the gauge node 
ranks  and the complexified Kähler parameters 




• For a single gauge node, the Grassmannian duality is an 
example of quiver mutation

k

k

i → k → j k
j → i

Ni
ti = 2πri + iθi

Gr(k, N ) ≃ Gr(N − k, N )

n
n − k

−r
k n
r

μk
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Seiberg-like dualities

• 


•  “quarks” 


•  “anti-quarks” 

G′ = SU(N )

Nf ϕi

Nf ϕ̃i

• 


•  “quarks” 


•  “anti-quarks” 


•   “mesons” 


• Superpotential 

G′ = SU(Nf − N )

Nf Φi

Nf Φi

Nf Na Mi, j = ϕi ϕ̃j

- = Tr(Mi, jΦiΦ̃j)

• Quiver mutation were known to physicists as Seiberg duality Seiberg ‘94

Hanany-Hori ’97


Hori-Tong ’06


Benini-Cremonesi ‘12

• 2d Seiberg-like dualities are similar, except we can have a different number of  quarks and  
antiquarks, and 

Nf Na
N′ = max(Nf , Na) − N
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Duality as cluster transformations

• We studied how dualities act on a general quiver, 
and found the following transformation rules on the 
GLSM data 


• The gauge group ranks transform as tropical 
cluster -variables





• We observe that the Kähler coordinates  
mutate as dual cluster variables


x

N′ i = max(Nin
i , Nout

i ) − Ni

zi ∼ e−ti

z′ i = {
z−1
k if i = k

zi z[bki]+
k (1 + zk)−bki if i ≠ k

Benini-Park-PZ ‘14
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• Dualities can be tested by  partition functions, that factorizes onto sums of products of 
vortex and anti-vortex partition functions








• An identity between  defined on an -tuple of vortex configurations and  on its 
complement leads to




• The contact term  affects the Kähler coordinates of neighboring gauge nodes and leads 
to the cluster transformation

/2

ZNf ,Na
U(N) ∼ ∑⃗F ∈C(N,Nf )

Z ⃗F
0 Z ⃗Fv Z ⃗Fav

Z ⃗Fv (ΣF, Σ̃A; z) = ∑
n≥0

zn ∑
(nI)=n

N

∏
I=1

∏Na
A=1 (ΣFI

A )nI

∏N
J=1 (− ΣFI

FJ
− nI)nJ

∏N′ 

J′ =1 (− ΣFI
Fc

J′ 
− nI)nI

Z ⃗Fv N Z ⃗F c

v

ZNf ,Na
U(N) (ΣF±, Σ̃A±, rF, r̃A; z) = f (r)

imp fctc ∏
F,A

Γ(ΣF
A+ + rF + r̃A

2 )
Γ(1 − ΣF

A− − rF + r̃A

2 )
⋅ ZNa,Nf

U(N′ )(Σ̃A±, ΣF±, 1 − r̃A, 1 − rF; z−1)

fctc

Partition function test of dualities
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Mutation conjecture

• The generating functions of Gromov-Witten invariants for 
quiver varieties related by a mutation are the same under 
a cluster transformation of variables





• The vortex partition function is precisely the quasimap 
-function in genus 0.


• For  linear quivers corresponding to flag varieties, the 
conjecture has recently been proved

ℱg(z) = ℱg(z′ )

I

An Zhang ‘21

Bonelli-Sciarappa-Tanzini-Vasko, ’15


Webb ‘18

Ruan ‘17
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Examples

Cluster Algebras from Dualities of 2dN = (2, 2) Quiver Gauge Theories 83

(a) (b) (c)

(d) (e) (f)

Fig. 5. Cluster mutations on the quiver diagram for the Gulliksen-Negård Calabi-Yau threefold. The numbers
next to the arrows denote the multiplicity. Figure a is the GLSMmodel proposed in [53], while the other ones
are obtained via mutation on the left (µ1) or the right (µ2) node

Table 1. Map of Kähler coordinates of the Gulliksen-Negård CY threefold under cluster dualities

Mutations Kähler coordinates

(a) · z1 z2
(b) µ1 z−1

1 z2(1 + z1)4

(c) µ2µ1 z−1
1

(
1 + z2(1 + z1)4

)4 z−1
2 (1 + z1)−4

(d) µ1µ2µ1 z1
(
1 + z2(1 + z1)4

)−4 z−1
2 (1 + z1)−4

(
1 + z−1

1
(
1 + z2(1 + z1)4

)4)4

finite mutation type if there is a finite number of exchange matrices in all seeds: only a
finite number of quiver diagrams appear upon applying arbitrary sequences ofmutations.
Then mutations define an automorphism ofCm (wherem is the number of gauge nodes),
since certain sequences of mutations map a quiver diagram to itself, with a non-trivial
transformation of the cluster variables and Kähler coordinates zi : then the actual moduli
space of Kähler parameters of the field theory is the quotient of Cm by the automor-
phism group, and the group defines a tessellation of Cm . For example, quiver diagrams
constructed from ideal triangulations of Riemann surfaces with punctures are of this
nature. It would be interesting to see if this structure has any physical consequence, for
the phase structure and singular points of the moduli space, and so on.

Finally, let us suggest an application of quantum field theory to the theory of cluster
algebras. As described in Sect. 2, if a gauge node in a quiver has more colors than flavors,
i.e., if

max
(
N f (i), Na(i)

)
< Ni

for some gauge node i , then the theory breaks supersymmetry. An attempt to apply the
cluster mutationµi would generate a node with negative rank. Then, given a quiver with
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Finally, let us suggest an application of quantum field theory to the theory of cluster
algebras. As described in Sect. 2, if a gauge node in a quiver has more colors than flavors,
i.e., if

max
(
N f (i), Na(i)

)
< Ni

for some gauge node i , then the theory breaks supersymmetry. An attempt to apply the
cluster mutationµi would generate a node with negative rank. Then, given a quiver with

Gulliksen-Negård  CY

• There are many examples that can be studied…

• Note: the duality breaks down at . This is actually a very interesting point. I will 
revisit this point later.

zi = − 1

12/29



• Twisted chiral ring = quantum cohomology

σn = z

• Baxter polynomial = generator of the cohomology ring





• For Grassmannian,  classically generates the Chern classes of the tautological bundle


• Under duality, Baxter polynomials map as cluster variables!





• This hints at a deeper connection between quantum groups and quantum cohomology


Q(x) = det(x − σ)

Q(x)

Qi(x)Q′ i(x) ∼ ∏
i→j

Qj(x)bij + ∏
j→i

Qj(x)−bij .

Another conjecture on quantum cohomology

1 n
r
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• We introduce the notion of positive GLSM quivers 

• Recall that  

• A quiver defining a GLSM is positive if all the gauge group ranks stay positive in any duality 
frame


• If , then there is no ground state and . We say supersymmetry is broken.


• If  in some duality frame, then it vanishes in all duality frames

N′ i = max(Nin
i , Nout

i ) − Ni

N′ i < 0 Z /2 = 0

Z /2 = 0

Positive GLSM quivers

μ2

μ2

μ1

μ2

μ1

1

μ1

Flag variety 2 3

1 2 3

1 2 3 1 2 3

1 1 3
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Unframed quivers

2 3
μ3

1 2 −11

• Positivity is a very strong condition on unframed quivers


• Suppose we gauge the framed nodes in a flag variety

• In general, any quiver tail with single arrows will violate positivity in some mutation class


•

• The classification problem is still open


• This motivates us to study quivers with multiple arrows.

1 1

1 1

1 1

0 1

1 1

0 0

1

0 0

−1
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Kronecker quiver

• The simplest positive quiver corresponds to affine 
, also known as the Kronecker quiverA1

• Naively there are two independent coordinates  and , but they are 
actually constrained by the momentum map (D-term) equations





• The actual phase space lies in a codim-1 locus of the 2-dim space


• The importance of having a redundant Kähler coordinate will become 
clear later

t1 t2

|ϕ1 |2 + |ϕ2 |2 = t1

− |ϕ1 |2 − |ϕ2 |2 = t2
t1

t2

1 1

-1 -1

ϕ1

U(1)2

U(1)1

ϕ2

zi ∼ e−ti1 1
z1 z2
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• The Kronecker quiver is of affine type, so one expects it to be infinite-mutation type


• But the GLSM constraint  makes it finite


• Instead of an infinite class of equivalent GIT quotients we only have one: 

z2 = z−1
1

• Question: Can all quivers without framing be realized as quivers with framing?

• Can also see from the quantum cohomology (twisted chiral ring) relations that z2 = z−1
1

(σ1 − σ2)2 − z1 = 0 1 − z2(σ2 − σ1)2 = 0

1 1
z1 z−1

1

1 1
z−1
1 z1

μ1

ℙ1 ℙ1

1
z1

ℙ1

≃ 1

Kronecker quiver - infinite duality chain

1 1
z1 z2

1 1
z−1
1 z2z2

1

μ1 μ2
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n

∑
i=1

|ϕi |
2 = t1 , −

n

∑
i=1

|ϕi |
2 = t2

1 1
z1 z2

n

• By the same argument, we obtain the quantum cohomology of 
ℙn−1

(σ1 − σ2)n − z1 = 0 , 1 − z2(σ1 − σ2)n = 0

• We still have , but we get an infinite class of equivalent GIT quotients of 


• Abelian - nonabelian duality


• Can we also get an infinite class of Calabi-Yau spaces from unframed quivers? 

z2 = z−1
1 ℙn

n-Kronecker quiver

1 1 1

-1 -1 -1

ϕ1

U(1)2

U(1)1

ϕ2 ϕn…

…

…

1
z1

≃1 1
z1

1
z−1
1 zn−1

1

μ1n n

z−1
1

n
n2 − n − 1

zn2−n−1
1 z−n+1

1

μ2
n − 1n − 1 n
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• Simplest positive quiver with 3 nodes. Also arises from 
the ideal triangulation of a once-punctured torus





• Consistency of the equations imply  and 
we may again decouple an overall




• Calabi-Yau condition: # incoming arrows = # outgoing

• Let us examine the phase space in detail

|ϕ1 |2 + |ϕ2 |2 − |ϕ3 |2 − |ϕ4 |2 = r1

|ϕ3 |2 + |ϕ4 |2 − |ϕ5 |2 − |ϕ6 |2 = r2

|ϕ5 |2 + |ϕ6 |2 − |ϕ1 |2 − |ϕ2 |2 = r3

t1 + t2 + t3 = 0

U(1)+ ⊂ U(1)1 × U(1)2 × U(1)3

1

1

1

Markov quiver
ϕ1 ϕ2 ϕ6ϕ5ϕ4ϕ3

1 1 -1 -1 0 0

0 0 1 1 -1 -1

-1 -1 0 0 1 1

U(1)2

U(1)1

U(1)3
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Markov quiver - phase space




• : ,  cannot all vanish, parametrize a  base. , 
 describe the fiber directions. Thus the first equation 

describes the total space of , the 
resolved conifold.


• :  ,  cannot all vanish. Gauging  will give a 
projectivization of the fiber from the  equation, namely 

. Now ,  define another fiber 
growing on top of it.


• This is consistent with the third equation, so in the  
phase, it engineers the following geometry


|ϕ1 |2 + |ϕ2 |2 − |ϕ3 |2 − |ϕ4 |2 = r1

|ϕ3 |2 + |ϕ4 |2 − |ϕ5 |2 − |ϕ6 |2 = r2

|ϕ5 |2 + |ϕ6 |2 − |ϕ1 |2 − |ϕ2 |2 = − r1 − r2

r1 ≫ 0 ϕ1 ϕ2 ℙ1 ϕ3
ϕ4

8(−1) ⊕ 8(−1) → ℙ1

r2 ≫ 0 ϕ3 ϕ4 U(1)2
r1 ≫ 0

ℙ(8(−1) ⊕ 8(−1)) ϕ5 ϕ6

r1, r2 ≫ 0

8(−1) ⊕ 8(−1)5,6 → ℙ(8(−1) ⊕ 8(−1))3,4 → ℙ1
1,2

r1

r2

ℙ1
1,2

ℙ(8(−1) ⊕ 8(−1))3,4

8(−1) ⊕ 8(−1)5,6

1

1

1
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r1

r2

ℙ1
1,2

ℙ(8(−1) ⊕ 8(−1))3,4

8(−1) ⊕ 8(−1)5,6

3,4

5,6

1,2

3,4

1,2

5,6

Markov quiver - flop transitions




• Now study the region  and 


• The first equation defines 


• The second equation defines 


• Same base, different fibers. Now examine the third equation


• If , then ,  cannot all vanish, and ,  are fiber directions





If , then fiber and base are again exchanged





• If , then ,  and ,  are identified





|ϕ1 |2 + |ϕ2 |2 − |ϕ3 |2 − |ϕ4 |2 = r1

|ϕ3 |2 + |ϕ4 |2 − |ϕ5 |2 − |ϕ6 |2 = r2

|ϕ5 |2 + |ϕ6 |2 − |ϕ1 |2 − |ϕ2 |2 = − r1 − r2

r1 ≪ 0 r2 ≫ 0
Tot[8(−1) ⊕ 8(−1))1,2 → ℙ1

3,4]
Tot[8(−1) ⊕ 8(−1))5,6 → ℙ1

3,4]

r1 + r2 > 0 ϕ1 ϕ2 ϕ5 ϕ6

8(−1) ⊕ 8(−1)5,6 → ℙ(8(−1) ⊕ 8(−1))1,2 → ℙ1
3,4

r1 + r2 < 0
8(−1) ⊕ 8(−1)1,2 → ℙ(8(−1) ⊕ 8(−1))5,6 → ℙ1

3,4

r1 + r2 = 0 ϕ1 ϕ2 ϕ5 ϕ6

8(−1) ⊕ 8(−1)1,2 → ℙ1
3,4

1 1
2

2
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Tessellates the Kähler moduli space moduli space

r1

r2

ℙ1
1,2

ℙ(8(−1) ⊕ 8(−1))3,4

8(−1) ⊕ 8(−1)5,6

1,2

5,6

3,4

5,6

1,2

3,4

5,6

3,4

1,2
3,4

5,6

1,2

3,4

1,2

5,6

There are 3!=6 phases, related by flop transitions between fiber and base 

1

1

z1 z2

z−1
1 z−1

2

1 1

1

z−1
1 z2(1 + z1)2

z1z−1
2 (1 + z1)−2

μ1 μ2

z−1
1 (1 + z2(1 + z1)2)2 z−1

2 (1 + z1)−2

z1z2(1 + z1)2

1 + z2(1 + z1)2)2

1 1

1

1

Markov quiver - summary
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n-Markov quiver

• The n-Markov quiver is particularly interesting because of its relation to an nonabelian 
theory


• Twisted chiral ring relations





• We decouple the overall  by the constraints  and , 
where . Integrating out these bifundamentals requires that  and 
therefore we can rewrite the chiral ring relations as 





• Apart from the decoupled  direction, there is no supersymmetric vacuum at generic 
points on the Kähler moduli space. We observe that at the origin , the 
twisted F-term equations take the same form as the SU(3) theory with  massless chiral 
multiplets.


(σi − σi−1)2 − zi (σi − σi+1)2 = 0, i = 1, 2, 3

U(1) z1z2z3 = 1 σ3,1 = − σ1,2 − σ2,3
σi, j ≡ σi − σj σi ≠ σj

(
σ1,2

−σ1,2 − σ2,3 )
n

= z1, (
σ2,3

−σ1,2 − σ2,3 )
n

= z2 .

U(1)
(t1, t2) = (0,0)

n

1

1

1

n

n

n
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2d SQCD

• Twisted chiral ring relations





• If  is a multiple of 3, then a one-dimension non-compact Coulomb branch appear in the 
direction 


• An overall scaling will not change the complex direction, and solutions related by 
permutations are identified under the Weyl group. It was proposed that singularities 
correspond to  distinct -th roots of unity, modulo overall scaling, that sum to zero.


• For higher rank, multiple Coulomb branch directions may open up. For , 
there are two non-compact directions along  and 




( σi

−σ1 − σ2 − ⋯σk−1 )
n

= 1, i = 1,…, k − 1

n
(σ1, σ2, σ3) = (1,e2πi/3, e4πi/3)σ

k n

(k, n) = (4,8)
(σ1, σ2, σ3, σ4) = (1, − 1,1, − 1)σ

(σ1, σ2, σ3, σ4) = (1, − 1,1, − 1)σ

k n

Hori-Tong ‘06
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Abelian necklace quivers

• What about SU( ) SQCD? The answer is given by 
necklace quivers


• Twisted chiral ring relations


k

( σi−1 − σi

σi − σi+1 )
n

= zi , i = 1,…, k 1 1
n

1 1
n

n n

• We factor out the overall U(1) by the constraints  and 

 .


• If  is a multiple of 3, then a pair of one-dimension non-compact Coulomb branches appear 
in the directions  and 


• For nonabelian groups, Cartan elements related by Weyl symmetry are identified. Such Weyl 
symmetry does not appear naturally in the abelian quiver. So we find many more solutions.


z1z2⋯zk = 1

σk − σ1 = −
k−1

∑
i=1

(σi − σi+1)

n
(σ1, σ2, σ3) = (1,e2πi/3, e4πi/3)σ (1,e4πi/3, e2πi/3)σ
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Quantum Coulomb branches
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Discrete -angleθ

• The foregoing analysis is a minor modification of Hori and Tong’s analysis of SU( ) 
SQCD. But we now have the additional freedom to tune the Kähler parameters.


• When , we find that no additional singularity arises and the origin is the only 
singular point. The point where the discrete -angle is turned on, , is regular for any 

 so is a smooth point on the moduli space. 

k

k = 3
θ θ = π

n

27/29

• This is also the point  where duality fails. z = e2πr+iθ = − 1



New singularities on the Kähler moduli space

• We find a new feature when . There is a continuous family of solutions that support 
quantum Coulomb branches as we tune the Kähler parameters.

k > 3

(0, 0)
(iπ, iπ, iπ)

(0, 0, 0)

(t, 0, − t)

(0, t, 0)
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(k, n) = (3,3) (k, n) = (4,2)

Kähler moduli space




• A general theory for unframed quivers seems difficult. We need to study case by case.


• We only studied abelian examples. Much more can be studied for nonabelian cases.


• The n-Markov quiver is regular at . Connection to SU(3) SQCD at ?


•  Study singular conformal field theories on the quantum Coulomb branches.


θ = π θ = π

Summary
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Thank you for your time!

Future directions

• Defined the notion of positive GLSM quiver, using dualities as cluster transformation.


• Identified Kronecker and Markov quivers as the simplest examples -> infinitely many equivalent 
geometries.


• Found abelian necklace quiver to realize features of nonabelian 2d SQCD, and found new 
quantum Coulomb branches on the Kähler moduli space.



Appendix



• Commutative ring with a distinguished set of 
generators called cluster variables 


• Other generators are defined recursively by


• Quiver: directed graph with skew-symmetric 
adjacency matrix 


• Mutation 

xi

bij

μk : (bij, xi) → (b′ ij, x′ i)

Cluster algebra (of geometric type)

xk x′ k = ∏
j←k

xbkj
j + ∏

j→k
xbjk

j

x1 x2 x3 x1 x′ 2 x3

μ2

A2 example

x1 x2

1 + x2
x1

x2

1 + x1 + x2
x1x2

1 + x1
x2

x1

1 + x2
x1

1 + x1 + x2
x1x2

1 + x1
x2

μ1

μ2

μ1

μ2

μ1

bij = (−1 0
0 1)

Fomin-Zelevinsky ‘01

 cluster algebra is generated by A2 {x1, x2,
1 + x1

x2
, 1 + x2

x1
, 1 + x1 + x2

x1x2 }
• More general definition includes coefficient variables yi



• The coefficient variables mutate as y′ k = y−1
k , y′ i = yiy

[bki]+
k (1 + yk)−bki

• Generically, mutation generates an infinite class of quivers or cluster variables


• A quiver is mutation-finite if its mutation equivalence class is finite


• A cluster algebra is of finite type if there are finite number of variables


• When are cluster algebras finite?

Examples of cluster algebras

y1 y2

y3

y−1
1 y2(1 + y1)2

y3y2
1(1 + y1)−2

μ1

Gulliksen-Negård quiver 

μ1 7
 μ2 7


4
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We allow frozen nodes that do not mutate

Markov quiver



• Finite-type iff the graph of the quiver is a finite-type Dynkin diagram


• Poisson structure  is mutation invariant


• Cluster mutations are canonical transformations on the Kähler moduli 

{yi , yj} := bijyiyj

Key properties

Fomin-Zelevinsky ‘03


