Remarks on 2d Unframed Quiver Gauge Theories

work with Hao Zou (BIMSA), to appear

Peng Zhao

Workshop on interaction between Geometric Topology and Mathematical Physics Southwest Jiaotong University May 26, 2022

Plan

- Review of GLSM and Kähler quotient
 - Quiver varieties
 - Dualities as cluster mutations
- Positive GLSM quiver and infinite chain of dualities
 - Kronecker quiver
 - Markov quiver
- Abelian necklace quiver and 2d SQCD
 - Coulomb branch analysis
 - Quantum Coulomb branch

For the math audience, the goal is to draw attention to (unframed) quiver varieties as interesting objects to study Gromov-Witten theory.

For the physics audience, the goal is to present a connection between abelian quiver gauge theories and nonabelian theories in 2d.

Kähler Moduli and Cluster Algebra

- 2d quiver GLSM provide an important class of Kähler quotient construction of quiver varieties
- In gauge theory, it is natural to think of a quiver gauge group with physical parameters as cluster variables.
- By studying dualities, We found a surprising cluster algebra structure on the Kähler moduli space
 - Benini-Park-PZ '14

• moment map μ'

moment map μ

Same IR observables (generating functions)

We apply Fan-Jarvis-Ruan's theory to quiver varieties, before and after mutations, to obtain their generating functions $\mathscr{F}_q^{bf}, \mathscr{F}_q^{af}$. Recall that we have a quantum variable q_i for each vertex. Benini-Park-Zhao's physical analysis suggests the following mathematical conjecture. **Mutation Conjecture** \mathscr{F}_g^{bf} and \mathscr{F}_g^{af} are equivalent up to the change of variables

 $\widetilde{q}_i = \begin{cases} q_k^{-1}, & \text{if } i = k, \\ q_i q^{|a_{ki}|} (q_k + 1)^{-a_{ki}}, & \text{if Otherwise,} \end{cases}$

• In the first part of the talk, I will review the physical analysis that lead to a precise mathematical conjecture

GLSM and Kähler quotient

- In any quantum field theory (or physical system, the central object is the space of ground states, or vacua.
- We are interested in gauged linear sigma models defined by a gauge group and chiral fields.
- Consider the U(1) theory with *n* chirals, with potential

$$U = \sum_{i=1}^{n} |\sigma|^{2} |\phi_{i}|^{2} + \frac{e^{2}}{2} \left(\sum_{i=1}^{n} |\phi_{i}|^{2} - r\right)^{2}$$

• If r > 0, then $\phi \neq 0$ and the **Higgs branch vacua** is geometrically $\mathbb{CP}^{n-1} = S^{2n-1}/U(1)$

$$\mathbb{CP}^{n-1} = \left\{ (\phi_1, \dots, \phi_n) \in \mathbb{C}^n \right| \left| \sum_{i=1}^n |\phi_i|^2 = r \right\} / \mathsf{U}(1)$$

- If r = 0, then $\phi = 0$ and $\sigma \neq 0$, and we have the **Coulomb branch vacua** (more on this later)
- In the $e \to \infty$ limit, the GLSM is believed to flow to a nonlinear sigma model whose target space is the classical Higgs branch Witten '93

GLSM and Kähler quotient

- This provides a large class of Kähler quotient manifolds such as Grassmannians, toric varieties and determinant Calabi-Yau's.
- One can also introduce superpotentials, that engineer hypersurfaces in toric varieties.
- It is useful to introduce a quiver notation. A quiver is a directed graph with nodes and arrows.
- A circle node represents a gauge group U(k), a square (frame) node represents a flavor group U(n) and an arrow represents a field $\phi_i^{\alpha} \in Mat(\mathbb{C}^k, \mathbb{C}^n)$

Quiver varieties

- It is natural to consider quiver gauge theories with multiple Kähler parameters
- The mathematical framework is quiver varieties
 - Assign a gauge group $GL(N_i)$ to each gauge node
 - Each arrow defines a vector space $\mathbb{C}^{N_i \times N_j}$

•
$$V = \bigoplus_{i \to j \in Q_1} \mathbb{C}^{N_i \times N_j}$$
 modulo the gauge group $G : \prod_{\text{gauge nodes}} \operatorname{GL}(N_i)$

- The adjoint action on G induces a momentum map $\mu: V \to \mathfrak{g}^*$
- The quiver variety is the GIT quotient $\mu^{-1}(r_i)//G$

See e.g. Kirillov's textbook

Example: Flag variety

$$N_1 \longleftarrow N_2 \longleftarrow N_3$$

Quiver mutations

- There is a local operation on a quiver known as mutation on the k node
 - Reverse arrows emanating from *k*
 - For each path $i \to k \to j$ passing through k, add an arrow $j \to i$
 - Remove pairs of arrows forming a 2-cycle
- A GLSM quiver has additional data: the gauge node ranks N_i and the complexified Kähler parameters $t_i = 2\pi r_i + i\theta_i$
- For a single gauge node, the Grassmannian duality is an example of quiver mutation

Seiberg-like dualities

- Quiver mutation were known to physicists as Seiberg duality

 - G' = SU(N)
 - N_f "quarks" ϕ_i
 - $N_{\!f}$ "anti-quarks" $\tilde{\phi}_i$

- $G' = SU(N_f N)$
- N_f "quarks" Φ_i
- N_f "anti-quarks" Φ_i
- $N_f N_a$ "mesons" $M_{i,j} = \phi_i \tilde{\phi}_j$
- Superpotential $\mathcal{W} = \text{Tr}(M_{i,j}\Phi_i\tilde{\Phi}_j)$
- 2d Seiberg-like dualities are similar, except we can have a different number of N_f quarks and N_a antiquarks, and $N' = \max(N_f, N_a) N$
 - Hanany-Hori '97
 - Hori-Tong '06
 - Benini-Cremonesi '12

Seiberg '94

Duality as cluster transformations

- We studied how dualities act on a general quiver, and found the following transformation rules on the GLSM data
- The gauge group ranks transform as tropical cluster *x*-variables

 $N'_i = \max(N_i^{\text{in}}, N_i^{\text{out}}) - N_i$

• We observe that the Kähler coordinates $z_i \sim e^{-t_i}$ mutate as dual cluster variables

$$z'_{i} = \begin{cases} z_{k}^{-1} & \text{if } i = k \\ z_{i} z_{k}^{[b_{ki}]_{+}} (1 + z_{k})^{-b_{ki}} & \text{if } i \neq k \end{cases}$$

- Gauge group G
- Matter field $\phi_i \in \mathbb{C}$
- moment map μ

GLSM B

- Gauge group G'
- Matter field ϕ_i'
- moment map μ'

Same IR observables (generating functions)

Benini-Park-PZ '14

Partition function test of dualities

• Dualities can be tested by \mathbb{S}^2 partition functions, that factorizes onto sums of products of vortex and anti-vortex partition functions

$$Z_{U(N)}^{N_f,N_a} \sim \sum_{\overrightarrow{F} \in C(N,N_f)} Z_0^{\overrightarrow{F}} Z_V^{\overrightarrow{F}} Z_{av}^{\overrightarrow{F}}$$

$$Z_{\mathsf{V}}^{\vec{F}}(\Sigma_{F},\tilde{\Sigma}_{A};z) = \sum_{n\geq 0} z^{n} \sum_{(n_{I})=n} \prod_{I=1}^{N} \frac{\prod_{I=1}^{N} \prod_{I=1}^{N_{a}} (\Sigma_{A}^{F_{I}})_{n_{I}}}{\prod_{J=1}^{N} (-\Sigma_{F_{J}}^{F_{I}} - n_{I})_{n_{J}} \prod_{J'=1}^{N'} (-\Sigma_{F_{J'}}^{F_{I}} - n_{I})_{n_{I}}}$$

An identity between Z_V^F defined on an *N*-tuple of vortex configurations and Z_V^{F^c} on its complement leads to

$$Z_{U(N)}^{N_{f},N_{a}}\left(\Sigma_{F\pm},\tilde{\Sigma}_{A\pm},r_{F},\tilde{r}_{A};z\right) = f_{\text{imp}}^{(r)} f_{\text{ctc}} \prod_{F,A} \frac{\Gamma\left(\Sigma_{A\pm}^{F} + \frac{r_{F}+r_{A}}{2}\right)}{\Gamma\left(1-\Sigma_{A-}^{F} - \frac{r_{F}+\tilde{r}_{A}}{2}\right)} \cdot Z_{U(N')}^{N_{a},N_{f}}\left(\tilde{\Sigma}_{A\pm},\Sigma_{F\pm},1-\tilde{r}_{A},1-r_{F};z^{-1}\right)$$

- The contact term $f_{\rm CtC}$ affects the Kähler coordinates of neighboring gauge nodes and leads to the cluster transformation

Mutation conjecture

 The generating functions of Gromov-Witten invariants for quiver varieties related by a mutation are the same under a cluster transformation of variables

 $\mathcal{F}_g(z) = \mathcal{F}_g(z')$

- The vortex partition function is precisely the quasimap *I* -function in genus 0.
- For A_n linear quivers corresponding to flag varieties, the conjecture has recently been proved

Ruan '17

Bonelli-Sciarappa-Tanzini-Vasko, '15

Webb '18

Zhang '21

Examples

• There are many examples that can be studied...

Gulliksen-Negård CY

• Note: the duality breaks down at $z_i = -1$. This is actually a very interesting point. I will revisit this point later.

Another conjecture on quantum cohomology

• Twisted chiral ring = quantum cohomology

$$\underbrace{1}_{r} \longleftarrow \boxed{n} \qquad \sigma^{n} = z$$

• Baxter polynomial = generator of the cohomology ring

 $Q(x) = \det(x - \sigma)$

- For Grassmannian, Q(x) classically generates the Chern classes of the tautological bundle
- Under duality, Baxter polynomials map as cluster variables!

$$Q_i(x)Q'_i(x) \sim \prod_{i \to j} Q_j(x)^{b_{ij}} + \prod_{j \to i} Q_j(x)^{-b_{ij}}.$$

• This hints at a deeper connection between quantum groups and quantum cohomology

Positive GLSM quivers

- We introduce the notion of **positive GLSM quivers**
- Recall that $N'_i = \max(N_i^{\text{in}}, N_i^{\text{out}}) N_i$
- A quiver defining a GLSM is positive if all the gauge group ranks stay positive in *any* duality frame

- If $N'_i < 0$, then there is no ground state and $Z_{S^2} = 0$. We say supersymmetry is broken.
- If $Z_{S^2} = 0$ in some duality frame, then it vanishes in **all** duality frames

14/29

Unframed quivers

- Positivity is a very strong condition on unframed quivers
- Suppose we gauge the framed nodes in a flag variety

• In general, any quiver tail with single arrows will violate positivity in some mutation class

- The classification problem is still open
- This motivates us to study quivers with multiple arrows.

Kronecker quiver

• The simplest positive quiver corresponds to affine A_1 , also known as the Kronecker quiver

	ϕ_1	ϕ_2
U(1) ₁	1	1
U(1) ₂	-1	-1

 t_2

 Naively there are two independent coordinates t₁ and t₂, but they are actually constrained by the momentum map (D-term) equations

$$|\phi_1|^2 + |\phi_2|^2 = t_1$$

 $-|\phi_1|^2 - |\phi_2|^2 = t_2$

- The actual phase space lies in a codim-1 locus of the 2-dim space
- The importance of having a redundant Kähler coordinate will become clear later

Kronecker quiver - infinite duality chain

• Can also see from the quantum cohomology (twisted chiral ring) relations that $z_2 = z_1^{-1}$

$$(\sigma_1 - \sigma_2)^2 - z_1 = 0 \qquad 1 - z_2(\sigma_2 - \sigma_1)^2 = 0$$

• The Kronecker quiver is of affine type, so one expects it to be infinite-mutation type

- But the GLSM constraint $z_2 = z_1^{-1}$ makes it finite
- Instead of an infinite class of equivalent GIT quotients we only have one:

• Question: Can all quivers without framing be realized as quivers with framing?

n-Kronecker quiver

	ϕ_1	ϕ_2	•••	ϕ_n
<i>U</i> (1) ₁	1	1	•••	1
U(1) ₂	-1	-1	•••	-1

By the same argument, we obtain the quantum cohomology of \mathbb{P}^{n-1}

$$(\sigma_1 - \sigma_2)^n - z_1 = 0, \qquad 1 - z_2(\sigma_1 - \sigma_2)^n = 0$$

• We still have $z_2 = z_1^{-1}$, but we get an infinite class of equivalent GIT quotients of \mathbb{P}^n

- Abelian nonabelian duality
- Can we also get an infinite class of Calabi-Yau spaces from unframed quivers?

Markov quiver

	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5	ϕ_6
<i>U</i> (1) ₁	1	1	-1	-1	0	0
U(1) ₂	0	0	1	1	-1	-1
U(1) ₃	-1	-1	0	0	1	1

 Simplest positive quiver with 3 nodes. Also arises from the ideal triangulation of a once-punctured torus

 $|\phi_1|^2 + |\phi_2|^2 - |\phi_3|^2 - |\phi_4|^2 = r_1$ $|\phi_3|^2 + |\phi_4|^2 - |\phi_5|^2 - |\phi_6|^2 = r_2$ $|\phi_5|^2 + |\phi_6|^2 - |\phi_1|^2 - |\phi_2|^2 = r_3$

- Consistency of the equations imply $t_1 + t_2 + t_3 = 0$ and we may again decouple an overall $U(1)_+ \subset U(1)_1 \times U(1)_2 \times U(1)_3$
- Calabi-Yau condition: # incoming arrows = # outgoing
- Let us examine the phase space in detail

Markov quiver - phase space

$$\begin{aligned} |\phi_1|^2 + |\phi_2|^2 - |\phi_3|^2 - |\phi_4|^2 &= r_1 \\ |\phi_3|^2 + |\phi_4|^2 - |\phi_5|^2 - |\phi_6|^2 &= r_2 \\ |\phi_5|^2 + |\phi_6|^2 - |\phi_1|^2 - |\phi_2|^2 &= -r_1 - r_2 \end{aligned}$$

- $r_1 \gg 0$: ϕ_1 , ϕ_2 cannot all vanish, parametrize a \mathbb{P}^1 base. ϕ_3 , ϕ_4 describe the fiber directions. Thus the first equation describes the total space of $\mathcal{O}(-1) \oplus \mathcal{O}(-1) \to \mathbb{P}^1$, the resolved conifold.
- $r_2 \gg 0$: ϕ_3 , ϕ_4 cannot all vanish. Gauging $U(1)_2$ will give a projectivization of the fiber from the $r_1 \gg 0$ equation, namely $\mathbb{P}(\mathcal{O}(-1) \oplus \mathcal{O}(-1))$. Now ϕ_5 , ϕ_6 define another fiber growing on top of it.
- This is consistent with the third equation, so in the $r_1, r_2 \gg 0$ phase, it engineers the following geometry

$$\mathcal{O}(-1) \oplus \mathcal{O}(-1)_{5,6} \to \mathbb{P}(\mathcal{O}(-1) \oplus \mathcal{O}(-1))_{3,4} \to \mathbb{P}^1_{1,2}$$

Markov quiver - flop transitions

$$\begin{aligned} |\phi_1|^2 + |\phi_2|^2 - |\phi_3|^2 - |\phi_4|^2 &= r_1 \\ |\phi_3|^2 + |\phi_4|^2 - |\phi_5|^2 - |\phi_6|^2 &= r_2 \\ |\phi_5|^2 + |\phi_6|^2 - |\phi_1|^2 - |\phi_2|^2 &= -r_1 - r_2 \end{aligned}$$

- Now study the region $r_1 \ll 0$ and $r_2 \gg 0$
- The first equation defines $\text{Tot}[\mathcal{O}(-1) \bigoplus \mathcal{O}(-1))_{1,2} \to \mathbb{P}^1_{3,4}]$
- The second equation defines $\text{Tot}[\mathcal{O}(-1) \bigoplus \mathcal{O}(-1))_{5,6} \to \mathbb{P}^1_{3,4}]$
- Same base, different fibers. Now examine the third equation
- If $r_1 + r_2 > 0$, then ϕ_1 , ϕ_2 cannot all vanish, and ϕ_5 , ϕ_6 are fiber directions $\mathscr{O}(-1) \bigoplus \mathscr{O}(-1)_{5,6} \to \mathbb{P}(\mathscr{O}(-1) \bigoplus \mathscr{O}(-1))_{1,2} \to \mathbb{P}^1_{3,4}$

If $r_1 + r_2 < 0$, then fiber and base are again exchanged $\mathscr{O}(-1) \oplus \mathscr{O}(-1)_{1,2} \to \mathbb{P}(\mathscr{O}(-1) \oplus \mathscr{O}(-1))_{5,6} \to \mathbb{P}^1_{3,4}$

• If $r_1 + r_2 = 0$, then ϕ_1 , ϕ_2 and ϕ_5 , ϕ_6 are identified $\mathcal{O}(-1) \bigoplus \mathcal{O}(-1)_{1,2} \to \mathbb{P}^1_{3,4}$

Markov quiver - summary

There are 3!=6 phases, related by flop transitions between fiber and base

Tessellates the Kähler moduli space moduli space

n-Markov quiver

- The n-Markov quiver is particularly interesting because of its relation to an nonabelian theory
- Twisted chiral ring relations

$$(\sigma_i - \sigma_{i-1})^2 - z_i (\sigma_i - \sigma_{i+1})^2 = 0, \quad i = 1, 2, 3$$

• We decouple the overall U(1) by the constraints $z_1 z_2 z_3 = 1$ and $\sigma_{3,1} = -\sigma_{1,2} - \sigma_{2,3}$, where $\sigma_{i,j} \equiv \sigma_i - \sigma_j$. Integrating out these bifundamentals requires that $\sigma_i \neq \sigma_j$ and therefore we can rewrite the chiral ring relations as

$$\left(\frac{\sigma_{1,2}}{-\sigma_{1,2}-\sigma_{2,3}}\right)^n = z_1, \qquad \left(\frac{\sigma_{2,3}}{-\sigma_{1,2}-\sigma_{2,3}}\right)^n = z_2.$$

• Apart from the decoupled U(1) direction, there is no supersymmetric vacuum at generic points on the Kähler moduli space. We observe that at the origin $(t_1, t_2) = (0,0)$, the twisted F-term equations take the same form as the SU(3) theory with *n* massless chiral multiplets.

2d SQCD

• Twisted chiral ring relations

$$\left(\frac{\sigma_i}{-\sigma_1 - \sigma_2 - \cdots - \sigma_{k-1}}\right)^n = 1, \qquad i = 1, \dots, k-1$$

- If *n* is a multiple of 3, then a one-dimension non-compact Coulomb branch appear in the direction $(\sigma_1, \sigma_2, \sigma_3) = (1, e^{2\pi i/3}, e^{4\pi i/3})\sigma$
- An overall scaling will not change the complex direction, and solutions related by permutations are identified under the Weyl group. It was proposed that singularities correspond to *k* distinct *n*-th roots of unity, modulo overall scaling, that sum to zero.
- For higher rank, multiple Coulomb branch directions may open up. For (k, n) = (4,8), there are two non-compact directions along $(\sigma_1, \sigma_2, \sigma_3, \sigma_4) = (1, -1, 1, -1)\sigma$ and $(\sigma_1, \sigma_2, \sigma_3, \sigma_4) = (1, -1, 1, -1)\sigma$

Hori-Tong '06

Abelian necklace quivers

- What about SU(*k*) SQCD? The answer is given by necklace quivers
- Twisted chiral ring relations

$$\left(\frac{\sigma_{i-1}-\sigma_i}{\sigma_i-\sigma_{i+1}}\right)^n = z_i, \qquad i = 1, \dots, k$$

- We factor out the overall U(1) by the constraints $z_1 z_2 \cdots z_k = 1$ and $\sigma_k \sigma_1 = -\sum_{i=1}^{k-1} (\sigma_i \sigma_{i+1})$.
- If *n* is a multiple of 3, then a pair of one-dimension non-compact Coulomb branches appear in the directions $(\sigma_1, \sigma_2, \sigma_3) = (1, e^{2\pi i/3}, e^{4\pi i/3})\sigma$ and $(1, e^{4\pi i/3}, e^{2\pi i/3})\sigma$
- For nonabelian groups, Cartan elements related by Weyl symmetry are identified. Such Weyl symmetry does not appear naturally in the abelian quiver. So we find many more solutions.

Quantum Coulomb branches

The number of quantum Coulomb branches of massless SU(k) SQCD with n chiral multiplets.

$k \backslash n$	2	3	4	5	6	7	8	9	10	11
2	1	0	1	0	1	0	1	0	1	0
3	0	2	0	0	2	0	0	2	0	0
4	3	0	9	0	15	0	21	0	27	0
5	0	0	0	24	60	0	0	0	24	0
6	10	30	100	0	340	0	640	270	1090	0

The number of quantum Coulomb branches of the abelian n-necklace quiver with k nodes

Discrete θ -angle

- The foregoing analysis is a minor modification of Hori and Tong's analysis of SU(k) SQCD. But we now have the additional freedom to tune the Kähler parameters.
- When k = 3, we find that no additional singularity arises and the origin is the only singular point. The point where the discrete θ -angle is turned on, $\theta = \pi$, is regular for any n so is a smooth point on the moduli space.

$k \backslash n$	1	2	3	4	5	6	7
2	1	0	1	0	1	0	1
3	0	0	0	0	0	0	0
4	1	2	5	4	9	6	13
5	0	0	0	0	0	12	0
6	1	0	31	0	109	24	235

The number of quantum Coulomb branches of the abelian *n*-necklace quiver with k nodes at singularity of the Kähler moduli space, $t_i = i\pi$ for $i = 1, \ldots, k - 1$.

• This is also the point $z = e^{2\pi r + i\theta} = -1$ where duality fails.

New singularities on the Kähler moduli space

• We find a new feature when k > 3. There is a continuous family of solutions that support quantum Coulomb branches as we tune the Kähler parameters.

Kähler moduli space

(k, n) = (3, 3)

Summary

- Defined the notion of positive GLSM quiver, using dualities as cluster transformation.
- Identified Kronecker and Markov quivers as the simplest examples -> infinitely many equivalent geometries.
- Found abelian necklace quiver to realize features of nonabelian 2d SQCD, and found new quantum Coulomb branches on the Kähler moduli space.

Future directions

- A general theory for unframed quivers seems difficult. We need to study case by case.
- We only studied abelian examples. Much more can be studied for nonabelian cases.
- The n-Markov quiver is regular at $\theta = \pi$. Connection to SU(3) SQCD at $\theta = \pi$?
- Study singular conformal field theories on the quantum Coulomb branches.

Thank you for your time!

Appendix

Cluster algebra (of geometric type)

- Commutative ring with a distinguished set of \bullet generators called cluster variables x_i
- Other generators are defined recursively by \bullet
 - Quiver: directed graph with skew-symmetric adjacency matrix b_{ii}

• Mutation
$$\mu_k : (b_{ij}, x_i) \rightarrow (b'_{ij}, x'_i)$$

Fomin-Zelevinsky '01

More general definition includes coefficient variables y_i •

Examples of cluster algebras

• The coefficient variables mutate as $y'_k = y_k^{-1}$, $y'_i = y_i y_k^{[b_{ki}]_+} (1 + y_k)^{-b_{ki}}$

- Generically, mutation generates an infinite class of quivers or cluster variables
- A quiver is mutation-finite if its mutation equivalence class is finite
- A cluster algebra is of **finite type** if there are finite number of variables
- When are cluster algebras finite?

Key properties

- Finite-type iff the graph of the quiver is a finite-type Dynkin diagram
- Fomin-Zelevinsky '03

- Poisson structure $\{y_i, y_j\} := b_{ij}y_iy_j$ is mutation invariant
- Cluster mutations are canonical transformations on the Kähler moduli