Virtual Cycles on Projective Completions

Jeongseok Oh

Imperial College London

2022 Miniworkshop on interaction between Geometric Topology and

Mathematical Physics

Noncomact spaces

- Qunatum Lefschetz
- Jiang-Thomas
- Projective completion

1. Noncomact spaces.

- Invariants are obtained by integrations over moduli spaces. For instance Gromov-Witten invariants are integrations over the moduli spaces of stable maps. Donaldson-Thomas invariants are integrations over the moduli space of stable sheaves.
- Integrations are well-defined when the moduli spaces are compact and have nice enough deformation-obstruction theories, so called *perfect* obstruction theory (Li-Tian, Behrend-Fantechi).
- When the moduli space is not compact, but is equipped with the perfect obstruction theory, the integrand is well-defined, but the integrations are not well-defined.

- An important principle of (several) localisations is to integrate over smaller spaces rather than original spaces.
- Torus localisation (Graber-Pandharipande) localises the integrand to the fixed loci of the torus action on the moduli space.
- Cosection localisation (Kiem-Li) localised it to the degeneracy loci of the cosection.
- So even if the moduli space is noncompact, we can do integrations so long as we can localise them to a compact subspace.

- There are several interesting noncompact moduli spaces having perfect obstruction theories.
- A moduli space of stable maps to a GIT quotient with *p*-fields can be considered as a *liner object* to study a moduli space of stable maps to a complete intersection into the GIT quotient, which is *quite non-linear*.
- A moduli space of stable sheaves on a surface with Higgs fields defines Vafa-Witten theory.

- These examples are cones over the compact moduli spaces. A moduli space of stable maps to a GIT quotient with *p*-fields projects to the space without *p*-fields. A moduli space of stable sheaves on a surface with Higgs fields also projects to the space without fields.
- So these have fiberwise \mathbb{C}^* -actions fixing the vertex spaces which are compact. We can define invariants.
- For these two examples, $\mathbb{C}^*\text{-}\mathsf{actions}$ define cosections degenerate on the vertex spaces as well.
- It is known that two localisations give different invariants.

2. Qunatum Lefschetz.

- For simplicity, we fix our GIT quotient $\mathbb{P}^4 = \mathbb{C}^5 /\!/ \mathbb{C}^*$. We also fix integers g and d.
- We denote $M(\mathbb{P}^4)$ by the moduli space of stable maps to \mathbb{P}^4 of genus g and degree d.
- (Ignoring stability condition), an element of $M(\mathbb{P}^4)$ is

where C is a genus g curve, L is a degree d bundle on C, $u: \mathcal{O}_C \to L^{\oplus 5}$ is a section.

• The virtual cycle (or the integrand) $[M(\mathbb{P}^4)]^{vir}$ is defined as a homology class of degree 2(5d + 1 - g).

- Let $X \subset \mathbb{P}^4$ be a smooth quintic threefold defined by the defining equation $f \in \Gamma(\mathcal{O}_{\mathbb{P}^4}(5))$.
- We denote M(X) by the moduli space of stable maps to X of genus g and degree d.
- An element of M(X) is

$$(C,L,u)$$
 such that $f(u) = 0 \in \Gamma(L^{\otimes 5}),$

where $(C, L, u) \in M(\mathbb{P}^4)$.

• The virtual cycle $[M(X)]^{vir}$ is defined as a homology class of degree 0. Since M(X) is a closed subspace of $M(\mathbb{P}^4)$, $[M(X)]^{vir}$ can be considered as a homology class of $M(\mathbb{P}^4)$.

- Now we denote $M(\mathbb{P}^4)^p$ by the moduli space of stable maps to \mathbb{P}^4 with the p-fields.
- An element of $M(\mathbb{P}^4)^p$ is

(C, L, u, p) with $p \in \Gamma(L^{\otimes -5} \otimes \omega_C)$

where $(C, L, u) \in M(\mathbb{P}^4)$.

- There is a projection map $M(\mathbb{P}^4)^p \to M(\mathbb{P}^4)$ forgetting p. Also there is an inclusion map $M(\mathbb{P}^4) \hookrightarrow M(\mathbb{P}^4)^p$ setting p = 0.
- The virtual cycle $[M(\mathbb{P}^4)^p]^{vir}$ is defined as a homology class of degree 0.

- There are two ways to localise $[M(\mathbb{P}^4)^p]^{vir}$ to $M(\mathbb{P}^4)$ torus and cosection localisations.
- Let $E_2 := R\pi_*L^{\otimes 5}[1]$ be the complex in the derived category of $M(\mathbb{P}^4)$, where $\pi : C \to M(\mathbb{P}^4)$ is the universal curve.
- Then the torus localised class $[M(\mathbb{P}^4)^p]^{vir}_{\mathsf{T}}$ of $[M(\mathbb{P}^4)^p]^{vir}$ is equal to

$$\left[c(E_2[-1]) \cap \left[M(\mathbb{P}^4)\right]^{vir}\right]_{\mathrm{deg}=0}$$

• Whereas the cosection localised class $[M(\mathbb{P}^4)^p]^{vir}_{\sigma}$ of $[M(\mathbb{P}^4)^p]^{vir}$ is equal to $[M(X)]^{vir}$ (Chang–J.Li, Kim–O., Chang–M.-L.Li, Chen–Janda–Webb, Picciotto).

Noncomact spaces Qunatum Lefschetz Jiang-Thomas Projective completion

• In genus 0, $M(\mathbb{P}^4)$ is smooth so that $[M(\mathbb{P}^4)]^{vir}=[M(\mathbb{P}^4)]$ and $E_2[-1]$ is a vector bundle, hence

$$[M(\mathbb{P}^4)^p]_{\mathsf{T}}^{vir} = e(E_2[-1]) \cap [M(\mathbb{P}^4)].$$

In this case, $[M(\mathbb{P}^4)^p]^{vir}_{\mathsf{T}} = [M(\mathbb{P}^4)^p]^{vir}_{\sigma}$ (Kim-Kresch-Pantev). This is called the *quantum Lefschetz property*.

• In genus > 0, $[M(\mathbb{P}^4)^p]^{vir}_{\mathsf{T}} \neq [M(\mathbb{P}^4)^p]^{vir}_{\sigma}$ (Givental).

3. Jiang-Thomas.

- Let S be a surface and $c \in H^{even}(S)$ be a cohomology class.
- We denote M(S) by the moduli space of stable sheaves F on S such that ch(F) = c.
- The virtual cycle $[M(S)]^{vir}$ is defined as a homology class of degree $2(1-\chi(F,F)).$

• We denote $M(K_S)$ by the moduli space of

 $(F,s), \ \mathcal{F} \in M(S), \ s \in \mathsf{Hom}(F,F \otimes K_S)$

- There is a projection map $M(K_S) \rightarrow M(S)$ forgetting s. Also there is an inclusion map $M(S) \hookrightarrow M(K_S)$ setting s = 0.
- The virtual cycle $[M(K_S)]^{vir}$ is defined as a homology class of degree 0.

- There are two ways to localise $[M(K_S)]^{vir}$ to M(S) torus and cosection localisations.
- Let $E_2 := \tau^{[1,2]} (R\pi_* \mathcal{H}om(\mathcal{F}, \mathcal{F}))$ [2] be the complex in the derived category of M(S), where \mathcal{F} is the (twisted) universal sheaf on $S \times M(S)$ and $\pi : S \times M(S) \to M(S)$ is the projection morphism.
- Then the torus localised class $[M(K_S)]_{\mathsf{T}}^{vir}$ of $[M(K_S)]^{vir}$ is equal to

$$\left[c(E_2[-1]) \cap [M(S)]^{vir}\right]_{\deg=0}.$$

- Letting $[M(K_S)]^{vir}_{\sigma}$ be the cosection localised class of $[M(K_S)]^{vir}$, Jiang-Thomas proved $[M(K_S)]^{vir}_{\mathsf{T}} \neq [M(K_S)]^{vir}_{\sigma}$ in general.
- More generally, let M be a quasi-smooth projective derived scheme and N be the (-1)-shifted cotangent bundle. Then we have two localisations $[N]_{\mathsf{T}}^{vir}$ and $[N]_{\sigma}^{vir}$ to M. Jiang-Thomas proved they may be different.

4. Projective completion.

- We denote by $M := M(\mathbb{P}^4)$ or M(S) or a quasi-smooth projective derived scheme, and by $N := M(\mathbb{P}^4)^p$ or $M(K_S)$ or the (-1)-shifted cotangent bundle of M.
- \bullet We denote by $p:\mathbb{P}(N)\to M$ the projectivisation.
- \bullet Our purpose is to construct a reduced cycle $[\mathbb{P}(N)]^{red}$ of degree 0 satisfying

$$[N]_{\mathsf{T}}^{vir} - [N]_{\sigma}^{vir} = p_*[\mathbb{P}(N)]^{red}.$$

• In particular, if N=M, then $\mathbb{P}(N)=\varnothing,$ hence

$$[N]_{\mathsf{T}}^{vir} = [N]_{\sigma}^{vir} = e(E_2) \cap [M]^{vir}.$$

• We prove it in a universal framework.

Virtual cycle

- Let M be a finite type DM stack.
- A complex E of vector bundles on M degrees in 0,−1 with the morphism φ : E → L_M to the (truncated) cotangent complex in the derived category is a *perfect obstruction theory* if h⁰(φ) is an isomorphism and h⁻¹(φ) is a surjection.
- A perfect obstruction theory gives rise to the virtual cycle $[M]^{vir}$ of degree $2 \operatorname{rank} E$ (Behrend-Fantechi).

Cosection

- Let (M, E) be as before.
- A cosection is a morphism $\sigma: E^{\vee} \to \mathcal{O}_M[-1]$, and its degeneracy locus $M(\sigma)$ is a closed subspace of M defined by the ideal generated by the image of $h^1(\sigma)$.
- Then the localised virtual cycle $[M]^{vir}_{\sigma}$ is defined in the homology of $M(\sigma)$ whose pushforward to M is $[M]^{vir}$ (Kiem-Li).

Reduced cycle

- Let (M, E) be as before. Let L be a line bundle on M.
- If there is a morphism $E^{\vee} \to L[-1]$ surjective in h^1 , then we can construct the reduced virtual cycle $[M]^{red}$ of degree $2 \operatorname{rank} E + 2$ such that

$$e(L) \cap [M]^{red} = [M]^{vir}$$

(Kiem-Li).

- Let M be a finite type DM stack over a smooth Artin stack A with the relative perfect obstruction theory E_1 . (This induces the absolute perfect obstruction theory.)
- Let E_2 be a 2-term complex of vector bundles on M degrees in 0, -1.
- Let N be $h^0(E_2^{\vee})$ as a space. Then E_2 on N is the relative perfect obstruction theory of N over M.
- Assume there exists a morphism $E_2[-1] \rightarrow E_1$ in the derived category whose cone, denoted by E, is a relative perfect obstruction theory of N over A.
- Assume for convenience that $\operatorname{rank} E = -\dim A$.

- For $(M, N) = (M(\mathbb{P}^4), M(\mathbb{P}^4)^p)$, $E_1 = (R\pi_*L^{\oplus 5})^{\vee}$ and $E_2 = R\pi_*L^{\otimes 5}[1]$.
- The morphism $E_2[-1] \rightarrow E_1$ is zero.
- For $(M, N) = (M(S), M(K_S))$, $E_1^{\vee}[1] = E_2 = \tau^{[1,2]} (R\pi_* \mathcal{H}om(\mathcal{F}, \mathcal{F}))[2].$
- The morphism $E_2[-1] \rightarrow E_1$ is induced by the derived structure.

- Assume further that there is a morphism $E_1^{\vee} \to E_2[-1]$.
- For $(M, N) = (M(\mathbb{P}^4), M(\mathbb{P}^4)^p)$, this is induced by the defining equation $f : \mathbb{C}^5 \to \mathbb{C}$.
- For $(M, N) = (M(S), M(K_S))$, this is the identity morphism.
- There is the tautological morphism $E_2 \to \mathcal{O}_N$ induced by the fiberwise \mathbb{C}^* -action on N. This induces $E_1^{\vee} \to \mathcal{O}_N[-1]$.
- Assume this again induces $\sigma: E^{\vee} \to \mathcal{O}_N[-1]$.

- With this set-up (N, E) defines $[N]^{vir}$.
- Fiberwise \mathbb{C}^* -action defines $[N]_{\mathsf{T}}^{vir}$.
- σ defines $[N]^{vir}_{\sigma}$.

Theorem

$$[N]^{vir}_{\mathsf{T}} - [N]^{vir}_{\sigma} = p_*[\mathbb{P}(N)]^{red}.$$

Proof

- Take the projective completion $\pi: \overline{N} := \mathbb{P}(N \oplus \mathcal{O}_M) \to M.$
- Extend E to \overline{E} on \overline{N} to be a relative perfect obsturction theory of A.
- Then we show $\pi_*[\overline{N}]^{vir} = [N]_{\mathsf{T}}^{vir}$ by \mathbb{C}^* -localisation.
- Extend σ to $\overline{\sigma}: \overline{E}^{\vee} \to \mathcal{O}_{\overline{N}}(\mathbb{P}(N))[-1]$ on \overline{N} . Using this we compute

$$\pi_*[\overline{N}]^{vir} = [N]^{vir}_{\sigma} + p_*[\mathbb{P}(N)]^{red}.$$

 ${\, \bullet \,}$ The projective completion \overline{N} is defined to be the quotient

$$q: N \times \mathbb{C} \longrightarrow (N \times \mathbb{C}) /\!\!/ \mathbb{C}^*.$$

• Here $E \oplus \mathcal{O}_N$ on $N \times \mathbb{C}$ gives rise to a perfect obstruction theory

$$E \oplus \mathcal{O}_N \longrightarrow \mathbb{L}_{N \times \mathbb{C}/A}$$

relative to A.

- The morphism $\mathbb{L}_{N \times \mathbb{C}/A} \to \mathbb{L}_q$ of cotangent complexes induces $E \oplus \mathcal{O}_N \to \mathbb{L}_q$.
- Its cocone \mathbb{E} induces a morphism $\mathbb{E} \to q^* \mathbb{L}_{\overline{N}/A}$.
- Using $D_{\mathbb{C}^*}(N \times \mathbb{C} M) \cong D(\overline{N})$, we obtain $\overline{E} := (q^*)^{-1}\mathbb{E} \to \mathbb{L}_{\overline{N}/A}$. We can check this is a perfect obstruction theory, extending E.

Torus localisation

- The fiberwise action on N and the trivial action on $\mathbb C$ induces a nontrivial action on $\overline{N}.$
- Since \overline{N} is compact, the torus localised virtual class $[\overline{N}]_{\mathsf{T}}^{vir}$ pushes forward to $[\overline{N}]^{vir}$.
- Fixed loci is $M \cup \mathbb{P}(N)$. So the cycle $[\overline{N}]^{vir}_{\mathsf{T}}$ has contributions on M and $\mathbb{P}(N)$.
- The contribution on M is $[N]_{T}^{vir}$.
- The contribution on $\mathbb{P}(N)$ is zero since the fixed part of $\overline{E}|_{\mathbb{P}(N)}$ has negative rank.
- So the pushforward of $[\overline{N}]_{\mathsf{T}}^{vir} = [N]_{\mathsf{T}}^{vir}$ into \overline{N} and the pushdown to M is itself, on the other hand it is $\pi_*[\overline{N}]^{vir}$.

Extension $\overline{\sigma}$

- The key starting point to define σ was the tautological morphism $E_2 \rightarrow \mathcal{O}_N$.
- Recall that N is $h^0(E_2^{\vee})$. So when we write $E_2^{\vee} = [F_0 \xrightarrow{d} F_1]$, N is cut-out space by $d \circ \tau_{F_0} : F_0 \to F_1|_{F_0}$, where τ_{F_0} is the tuatological section.
- Tautological section is extended to a section in the Euler sequence

$$0 \to \mathcal{O}_{\overline{F_0}}(-1) \xrightarrow{\overline{\tau} \oplus can} F_0 \oplus \mathcal{O}_{\overline{F_0}} \to T_q(-1) \to 0.$$

- Then \overline{N} is cut-out by $d \circ \overline{\tau}$.
- As τ_{F_0} induced $E_2 \to \mathcal{O}_N$, $\overline{\tau}$ induces $\overline{E}_2 \to \mathcal{O}_{\overline{N}}(\mathbb{P}(N))$.

- We assume $E_1^{\vee}[1] \to E_2$ on N is extended to \overline{N} .
- For instance if $E_1^{\vee}[1] \to E_2$ is defined on M, it is obvious. This is the case of our examples.
- All these define $\overline{\sigma}: \overline{E}^{\vee} \to \mathcal{O}_{\overline{N}}(\mathbb{P}(N))[-1].$
- $h^1(\overline{\sigma})$ is zero on M and has simple pole on $\mathbb{P}(N)$, where $[\overline{N}]^{vir}_{\overline{\sigma}}$ has nontrivial contributions.
- The contribution on M is $[N]^{vir}_{\sigma}$.

- Even if the fixed part of $\overline{E}|_{\mathbb{P}(N)}$ has negative rank, it defines a perfect obstruction theory of $\mathbb{P}(N)$. Note that its rank is -1.
- The composition with the restriction of $\overline{\sigma}$ is surjective in h^1 , so we can define the reduced class $[\mathbb{P}(N)]^{red}$ of degree $2 \operatorname{rank} + 2 = 0$.
- We compute the contribution of $[\overline{N}]^{vir}_{\overline{\sigma}}$ on $\mathbb{P}(N)$ is $[\mathbb{P}(N)]^{red}$.

• It proves
$$[\overline{N}]^{vir}_{\overline{\sigma}} = [N]^{vir}_{\sigma} + [\mathbb{P}(N)]^{red}.$$

• Pushing down to M is $\pi_*[\overline{N}]^{vir} = [N]^{vir}_\sigma + p_*[\mathbb{P}(N)]^{red}$

Thank you very much for your attention!