
1

Two-stage Traffic Load Prediction Based Resource
Reservation for Sliced HSR Wireless Networks

Li Yan, Xuming Fang, Senior Member, IEEE, Yuguang Fang, Fellow, IEEE, Yi Li, Qing Xue,

Abstract—In this letter, we propose a two-stage traffic load
prediction scheme for network slices (NSs) in high-speed railway
(HSR) wireless networks, where in the first stage, the K-means
algorithm is leveraged to cluster traffic flows, and in the second
stage, the long-short term memory (LSTM) algorithm is applied
to predict the traffic load. Based on the obtained traffic features
(including traffic volume and user velocity) and the network
radio resource characteristics (including coverage performance
and capacity), we design a service-tailored resource reservation
mechanism. Simulation results show that our proposed scheme
can significantly improve the traffic load prediction accuracy to
ensure the NS resource reservation performance.

Index Terms—HSR wireless networks; network slicing; traffic
load prediction; resource reservation; machine learning

I. INTRODUCTION

To satisfy the diverse requirements of emerging abundant
high-speed railway (HSR) mobile services during the evolution
of HSR industry towards intelligentization, network slicing,
which is used to enable isolated and service-tailored radio
resource management, is envisioned as a promising technol-
ogy in the fifth generation mobile communication system
for railway (5G-R) [1]. Based on the primary transmission
requirements, all the HSR applications are generally classified
into three categories served by three network slices (NSs) [2],
i.e., the enhanced massive broadband (eMBB) communica-
tion served by the mobile-broadband slice, the ultra reliable
low-latency communication (URLLC) served by the mission-
critical slice, and the massive machine type communication
(mMTC) served by the machine-type slice. Nevertheless, even
pertaining to the same service category, different HSR applica-
tions may have different traffic patterns. For instance, the text
and the voice URLLC data have different traffic patterns. The
event-triggered sensors and the periodically-updated sensors
have different traffic patterns [3], although they both pertain to
the mMTC. On-board passenger video services and track-side
video surveillance, both of which belongs to the eMBB, have
different mobility characteristics. In sliced wireless networks,
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to guarantee the resource availability, radio resources are
reserved for each slice based on the traffic load prediction.
In HSR, to ensure the transmission reliability, sufficient radio
resources should be preferentially reserved for the mission-
critical slice. However, excessive reservations lead to resource
wastes. Consequently, to guarantee the radio resource avail-
ability and utilization, the traffic patterns within an NS should
be carefully distinguished in order to improve the traffic load
prediction accuracy.

In most existing works on resource reservation, the main
objective is either to reduce the blocking rate for high-priority
users, like handover users [4], or to lower the signaling
overhead of resource allocation for services with strong pe-
riodicity, like voice over IP (VoIP) [5]. In 5G, as a new
paradigm, network slicing achieves service-tailored resource
managements, in which dedicated resources are reserved on
demand for target services with the time granularity of NS
life-cycles, so as to satisfy diverse transmission requirements.
In [6], a two-timescale resource management scheme was
proposed for 5G RAN network slicing, including long-term
resource reservation and short-term intra-slice resource allo-
cation. In [7], a hierarchical combinatorial auction mechanism
for network slicing resource managements was proposed,
where each tenant submits its bid to a centralized controller for
a certain amount of resources. However, these works jointly
formulated and solved the resource reservation and allocation,
and hardly ensured the performance of the resource reservation
which is largely determined by the traffic load prediction. In
[8], deep learning, i.e., the long-short term memory (LSTM)
algorithm, was employed to improve the cellular traffic load
prediction accuracy. Nevertheless, the service categories were
not considered. In this letter, we propose a two-stage traffic
load prediction scheme to improve the traffic load prediction
accuracy for high-speed railway wireless networks, where in
the first stage, the K-means algorithm is applied to perform
traffic flow clustering, while in the second stage, LSTM is
applied to predict traffic volumes. Compared with existing
works, our proposed scheme further distinguishes the traffic
flows pertaining to the same NS. Moreover, the velocity of
a user is considered in the traffic flow clustering phase, so
as to facilitate the subsequent resource management under
HSR. Simulation results demonstrate the effectiveness of our
proposed scheme. Then, according to the user velocity and
traffic volume obtained from the traffic load prediction, we
design a service-tailored resource reservation mechanism to
get a good match between user requests and radio resources
for sliced HSR wireless networks.
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II. TWO-STAGE TRAFFIC LOAD PREDICTION

A. K-means based intra-NS traffic flow clustering

As aforementioned, all existing HSR applications can be
roughly classified into three categories, and within each service
category, the traffic patterns of different data flows may still be
different. Consequently, to improve the traffic load prediction
so as to realize accurate resource reservation, we propose a
two-stage traffic load prediction scheme. In the first stage,
based on the traffic features, we leverage the K-means algo-
rithm to cluster the intra-NS traffic flows. Then, in the second
stage, the traffic volume of each cluster is input to the LSTM
algorithm for the final traffic load predictions. The design
of our proposed two-stage traffic load prediction scheme is
shown in Fig. 1, where for clarity the subscripts of machine-
type slice, mission-critical and mobile-broadband slice are
numbered as 1, 2 and 3, respectively, and M represents the
number of observation windows used for prediction. Since the
K-means and LSTM algorithms are typically used in clustering
and prediction, respectively, we select them in our design.
Nevertheless, our design can also be generalized to other
algorithms.
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Fig. 1. The LSTM based traffic load prediction.

Without loss of generality, we assume M NSs with each NS
serving Um data flows, which are eventually classified into Km

clusters based on their traffic patterns. In this study, we define
the number of data packets, the data volume per packet, and
the mobility velocity of the data flow as the traffic features.
The observation window is denoted as T0. Note that here
the mobility feature of data flows is the velocity of the user
devices generating them. Since in 5G heterogenous networks,
diverse resources have different mobility support, the mobility
feature is considered in the clustering stage so as to instruct the
subsequent resource reservation. Then, for data flow i in slice
m, the traffic feature vector in the t-th observation window
can be expressed as

sm,i (t) = [nm,i(t), dm,i(t), vm,i(t)] . (1)

where n(t), d(t) and v(t) represent the number of packets,
the data volume per packet, and the mobility velocity of data
flows, respectively.

For slice m, the observed traffic samples of all Um data
flows within the t-th observation window form a sample set
as

Dm (t) = {sm,1 (t) , sm,2 (t) , ..., sm,Um (t)} . (2)

Suppose that all Um data flows of slice m are eventually
classified into Km clusters, i.e.,

Cm (t) = {cm,1 (t) , cm,2 (t) , ..., cm,Km (t)} , (3)

then, the optimization objective of the K-means clustering
algorithm to minimize the total distance between the cluster
members and the mean vectors of corresponding clusters can
be formulated as [9]

minEm (t) =

Km∑
i=1

∑
sm,j(t)∈cm,i(t)

∥sm,j (t)−mm,i (t)∥2, (4)

where mm,i (t) represents the mean vector of cluster cm,i (t)
given below

mm,i (t) =
1

|cm,i (t)|
∑

sm,j(t)∈cm,i(t)

sm,j (t). (5)

From the clustering results, we obtain the mean vectors
of Km traffic patterns, which can be employed as reference
standards by network controllers to reserve NS resources. For
instance, the traffic flows belonging to clusters with higher
velocity should be assigned with radio resources with larger
network coverage, which will be further discussed in detail
in Section III. In the following subsection, by taking the
traffic volumes after clustering as inputs, we design the LSTM
algorithm for traffic load prediction.

B. LSTM based traffic load prediction

In the proposed two-stage traffic load prediction scheme as
shown in Fig. 1, the K-means traffic flow clustering algorithm
of the first stage aims to distinguish traffic patterns within NSs,
while in the second stage the traffic loads of different clusters
are taken as the input to the LSTM algorithm to predict the
traffic loads. Based on the definition of traffic feature vector
in (1), the traffic loads of cluster i in slice m in the t-th
observation window can be calculated as

rcm,i (t) =
∑

sm,j(t)∈cm,i(t)

nm,j(t) · dm,j(t) (6)

LSTM is an improved variation of recurrent neural network
(RNN), which uses memory cells to solve the vanishing and
exploding gradient problems. It consists of three components,
i.e., the input gate it determining the extent of information to
be written into the cell, the forget gate ft determining the
extent to forget the previous data, and the output gate ot

determining what output to generate from the current cell,
and more details about LSTM can be found in [10]. Fig. 1
illustrates the structure of the LSTM cell memory used in this
letter, where xt, ht, and ct are the input, the output, and the
cell state, respectively. In our problem, the output ht of LSTM
is a vector whose elements stand for the predicted traffic loads
for user clusters in the (t+ 1)-th prediction window, i.e.,

ht =
[
⌢
r c1,1 (t+ 1) , ...,

⌢
r cN,G (t+ 1)

]T
(7)

where (·)T is the matrix transpose operation, and G is the total

number of clusters of all NSs, i.e., G =
M∑

m=1
Km. Meanwhile,
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the input is a vector xt whose elements are the real measured
traffic loads of all clusters in the previous N observation
windows, which is given below

xt =

 rc1,1 (t−N) , · · · , rc1,1 (t)
...
rcN,G (t−N) , · · · , rcN,G (t)

 . (8)

In LSTM, the cell state ct is determined by the forget gate ft
and the input gate it, of which the expressions are respectively
given as

ft = σ (Wfxxt +Wfhht−1+bf ) (9)

and
it = σ (Wixxt +Wihht−1+bi) (10)

where σ (·) is the sigmoid function, whose derivative is still a
function of itself as σ(z)

′
= σ (z) (1− σ (z)). W and b are

the weight matrix and bias vector, respectively. Then, we can
get ct as

c̃t = tanh (Wcxxt +Wchht−1 + bc)
ct = ft ◦ ct−1 + it ◦ c̃t

(11)

where ◦ denotes the Hadamard (element-wise) product opera-
tion, and tanh (·) is the hyperbolic tangent function, whose
derivative is still a function of itself as tanh (z)

′
= 1 −

tanh (z)
2.

Given the output gate expression as

ot = σ (Woxxt +Wohht−1+bo) . (12)

we obtain
ht = ot ◦ tanh (ct) . (13)

Suppose that the real measured traffic loads of user cluster
cm,i in the (t+1)-th observation window is rcm,i (t+ 1), the
loss function of the LSTM-based traffic load prediction model
in this letter is defined as

Lt =
1

M∑
m=1

Km

M∑
m=1

Km∑
i=1

(
rcm,i (t+ 1)− ⌢

r cm,i (t+ 1)
)2

.

(14)

III. SERVICE-TAILORED RESOURCE RESERVATION
MECHANISM

From [11], the management of virtualized radio resources
in network slicing is at a MAC-frame granularity. Besides,
the network usually can acquire the channel state information
(CSI) of users, and hence can estimate the achieved capacity
of radio resources themselves. Therefore, in this letter, we
view the amount of radio resources and the transmission
capacity the same for analysis purpose. Then, according to the
traffic load prediction, we design a service-tailored resource
reservation scheme for HSR wireless networks.

To support the dramatically growing mobile applications in
HSR, the broadband millimeter wave (mmWave) technology
will be employed in HSR wireless networks to boost the trans-
mission capacity for some capacity demanding application
scenarios, such as at HSR hub stations with video surveillance.

Unfortunately, the directional radiation of mmWave commu-
nications will reduce the coverage and mobility performance
of wireless networks especially under high-mobility HSR. In
our previous study [12], [13], to solve this problem, we have
proposed a sub-6GHz and mmWave bands integrated HSR
wireless access network architecture. As shown in Fig. 2(a),
the critical data, such as URLLC services, are transmitted by
sub-6GHz bands with omni-directional coverage to guarantee
the transmission reliability, while the large-volume data, such
as eMBB services, are transmitted by mmWave bands with
directional beams to enhance the transmission capacity. The
whole network is built on the cloud radio access network
(C-RAN) technology. The baseband resources are gathered in
the BBU pool, and two kinds of remote radio units (RRUs),
i.e., low-frequency RRUs (LF-RRUs) operating at sub-6GHz
and high-frequency RRUs (HF-RRUs) operating at mmWave
bands, are deployed along rails. Subsequently, we design the
service-tailored resource reservation mechanism under this
network architecture.

MR AP
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Mobile-broadband slice

Mission-critical slice

HF-RRU

LF-RRU

BBU pool

(a)
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URLLC

(Mission-critical slice)
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(Machine-type slice)
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Train-to-ground control data High (100-138m/s)

Maintenance data of inspection vehicle Medium (10-30m/s)

Dispatching data of ground workers Low (1-3m/s)

Train-to-ground passenger data High (100-138m/s)

Ground passenger data Low (1-3m/s)

Wayside video surveillance data Low (static)
Train-to-ground sensing data High (100-138m/s)

Inspection vehicle sensing data Medium (10-30m/s)
Ground sensing data Low (static)

(b)
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Sub-6GHz

mmWave

mmWave

mmWave

mmWave

mmWave

Sub-6GHz

Sub-6GHz

Sub-6GHz

Fig. 2. Service-tailored resource reservation, (a) the sub-6GHz and mmWave
bands integrated HSR wireless network, (b) Service categories and preferred
resources.

In the two-stage traffic load prediction, the velocity feature
of users can be extracted from the output mean vectors of
the K-means based traffic flow clustering algorithm. Then,
we can use it as a key reference for resource reservation to
achieve a better match between users under different mobility
and radio resources. For clarity, in Fig. 2(b), several HSR
services are taken as case study to show which band resources
should be reserved for which services under different mobil-
ity levels. In the sub-6GHz and mmWave bands integrated
HSR wireless network, sub-6GHz bands can provide omni-
directional coverage, and hence are more suitable to serve
mission-critical services under high mobility. Consequently,
according to the velocity information from different clusters,
the mission-critical services with high mobility, such as train-
to-ground control data and sensing data, are assigned with
sub-6GHz resources. After the resource reservation for high-
mobility URLLC service, if there are still sub-6GHz resources
left, they will be reserved for other URLLC users (such as
the dispatching data of ground workers) to better guarantee
the transmission reliability or for low-data-rate mMTC users
to save energy (such as ground sensing data). In contrast,
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broadband mmWave resources should be employed to carry
the services with less-stringent reliability requirements but
high capacity requirements, such as train-to-ground passenger
data, high-volume wayside video surveillance data, etc. For
other HSR services, the same resource reservation method
can also be applied. From this design, we observe that the
traffic flow clustering and the traffic load prediction provide
the fundamental and valuable references for the NS resource
reservation, improving radio resource utilization while guar-
anteeing the transmission reliability for sliced HSR wireless
networks.

IV. NUMERICAL RESULTS

In this section, we present numerical results and the cor-
responding performance analysis for our proposed two-stage
traffic load prediction scheme. Without loss of generality, in
each of the three NSs, we set three kinds of traffic patterns, and
the corresponding parameter values of these traffic flows are
listed in Table I. The observation window T0 is 10min [6], the
hidden units of LSTM is 100, and the learning rate of LSTM is
0.1. A total of 1600 observation window data are generated as
the data training sets of the K-means traffic flow clustering
algorithm. After clustering, the traffic load data calculated
through Eq.(6) are subsequently taken as the input to train
the LSTM model. Since our main idea is to cluster traffic
flows before prediction, for fairness, we compare our proposed
scheme with the conventional LSTM scheme, namely LSTM
only scheme, where the traffic load data of different NSs are
directly input into the LSTM algorithm for prediction without
clustering.

Since our proposed scheme involves two stages, i.e., traffic
flow clustering and traffic load prediction, we present the
simulation results to respectively show the performance of
the two stages. In the traffic flow clustering stage, we use
the silhouette coefficient to evaluate the clustering validi-
ty [14], and then determine the optimal value of K. For
any sample sm,i(t), its silhouette coefficient is calculated as
sil(i) = (b(i) − a(i))/(max(a(i), b(i))), where a(i) denotes
the average distance of sm,i(t) to the other samples within
the same cluster, while b(i) denotes the average distance of
sm,i(t) to the other samples within its closest neighboring
cluster. sil(i) ranges from -1 to 1. When a(i) is much smaller
than b(i), which means the distance of the data point to
its own cluster is much smaller than that to other clusters,
sil(i) is close to 1 to show this data point is well clustered.
Oppositely, sil(i) is close to -1 to show it is badly clustered.
Then, the silhouette value of the whole cluster is defined as
S(Dm) = 1

Um

∑
sm,i∈Dm

sil(i). As a case study, Fig. 3 depicts

the clustering silhouette value of the URLLC service. In the
simulation, we set three kinds of traffic patterns for URLLC.
From the results in Fig. 3, we observe that the optimal value of
K is also 3, implying that the K-means algorithm can properly
cluster the URLLC services. In the following simulations, we
set Km = 3.

Next, in Fig. 4, the traffic load and average velocity of
URLLC services in the obtained clustering mean vectors
are shown. Through the clustering results, we acquire the
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Fig. 3. The clustering silhouette value of the URLLC service.

mobility status of different user clusters. As discussed in
Section III, based on the mobility status of users, we can
reserve proper network resources for them to improve their
mobility performance. For instance, sub-6GHz resources are
preferentially reserved for high-mobility URLLC users, while
mmWave resources are suitable for low-mobility eMBB users.
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Fig. 4. The clustering mean vector of URLLC service.

Then, in Fig. 5, we compare the traffic load prediction
performance of our proposed scheme with the conventional
LSTM only scheme, where Figs. 5(a)-(d) present the traffic
load prediction results of URLLC service under LSTM only
scheme, the traffic load prediction results of URLLC service
under the proposed scheme, the traffic load prediction results
of all three kinds of services under LSTM only scheme, and
the traffic load prediction results of all three kinds of services
under the proposed scheme, respectively. For clarity, only the
results in the first 100 observation windows are depicted. From
the results, we observe that owing to the pre-processing of
the traffic flow clustering in the proposed scheme, the LSTM
algorithm can better capture the variations of traffic loads
and achieve higher prediction accuracy, implying higher NS
resource reservation accuracy.

Finally, in Fig. 6, we illustrate the overall traffic load
prediction accuracy of two different schemes. From the results,
we observe that compared with the LSTM only scheme,
our proposed scheme can significantly improve the prediction
accuracy. Therefore, the conclusion can be drawn that the pre-
processing of traffic flow clustering can significantly improve
the prediction accuracy, therefore enhancing the NS resource
reservation performance.
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TABLE I
SIMULATION PARAMETERS

Parameter Value

Mission-critical slice

n(t): uniform distributions [4000, 4500]/T0, [1500, 2000]/T0, [500, 600]/T0

d(t): uniform distributions [500,600] bytes, [100,200] bytes, [20,30] bytes
v(t): uniform distributions [100,138] m/s, [10,30] m/s, [1,3] m/s
U(t): uniform distributions [2,5] users, [2,8] users, [6,16] users

Mobile-broadband slice

n(t): Poisson distributions 6000/T0, 2400/T0, 240/T0

d(t): uniform distributions [3000,3500] bytes, [300,400] bytes, [100,200] bytes
v(t): uniform distributions [100,138] m/s, [1,3] m/s, 0
U(t): uniform distributions [2,5] users, [5,10] users, [8,20] users

Machine-type slice

n(t): uniform distributions [200, 500]/T0, [1000, 1100]/T0, [10, 100]/T0

d(t): uniform distributions [100,110] bytes, [200,210] bytes, [50,70] bytes
v(t): uniform distributions [100,138] m/s, [10,30] m/s, 0
U(t): uniform distributions [4,10] users, [1,10] users, [1,20] users

(c) (d)

(a) (b)
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Fig. 5. Traffic load prediction results, (a) URLLC under LSTM only scheme,
(b) URLLC under the proposed scheme, (c) all three services under LSTM
only scheme, (d) all three services under the proposed scheme.
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V. CONCLUSIONS AND PROSPECTIVES

In this letter, we propose a two-stage traffic load prediction
scheme, where in the first stage, the K-means algorithm is
leveraged to perform intra-NS user clustering, while in the
second stage, the LSTM algorithm is applied to predict traffic
loads. Then, based on the clustering and prediction results,
we design a service-tailored resource reservation mechanism
for the sub-6GHz and mmWave bands integrated HSR wire-
less networks. Our numerical results have demonstrated that
our proposed scheme can significantly improve traffic load

prediction accuracy to ensure the NS resource reservation
performance. In our future work, based on the results of
this letter, we will study the adaptive and intelligent resource
allocation for sliced HSR wireless networks.
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