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Abstract—Frame aggregation and physical rate adaptation are
the most important enhancement for Wi-Fi network. However,
both of them involve certain tradeoffs between achieving higher
throughput and facing a higher error rate. The gain suffers from
the imperfect and highly dynamic channel condition. In addition,
there is a certain coupling relationship between the aggregation
frame length and the physical rate. That means the selection
of physical rate may affects the optimal frame length, and vice
versa. Therefore, a joint frame length and rate adaption scheme is
needed. Moreover, the large number of all available frame lengths
and rates makes the joint adaption more challenging. In this
paper, we propose a joint frame length and rate adaption (JFRA)
scheme based on Double Deep Q-learning (DDQN) algorithm.
The proposed scheme can automatically explore the environment
and learn the optimal frame length and rate from experience.
We apply prioritized training and incorporate reward value into
the computation of experience priority. It can improve learning
efficiency and accelerate the convergence of JFRA. We implement
and evaluate JFRA in ns3-ai framework and the simulation
results show that JFRA can outperform the Minstrel HT and
Thompson Sampling algorithm by up to 21.3% and 68.9% in
various cases.

Index Terms—Wi-Fi, deep reinforcement learning, rate adap-
tion, frame aggregation, joint optimization

I. INTRODUCTION

To meet the growing demand for higher wireless transmis-
sion rate, IEEE has continuously promoted 802.11 protocol
extensions to 802.11be [1] and 802.11bn [2], also named
Extremely High Throughput (EHT) and Ultra High Reliability
(UHR) wireless networks. Several enhanced mechanisms in
physical (PHY) layer and media access control (MAC) layer
are introduced to improve the performance of Wi-Fi network,
such as throughput, delay, reliability, etc. One of the key fea-
tures in MAC layer is frame aggregation mechanism, including
two basic methods: the aggregated MAC service data unit
(A-MSDU) and the aggregated MAC protocol data unit (A-
MPDU). Aggregation mechanism could merge preambles and
headers altogether, and concatenate data frames in a single
transmission. Thus, the transmission overhead can be reduced,
and MAC efficiency can be significantly improved.

Furthermore, several PHY layer enhancements including
channel bonding, short guard interval (GI), multiple input
multiple output (MIMO) spatial streams, and more advanced
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modulation and coding schemes (MCS) are brought forward.
These enhancements have significantly increased the PHY
rate, which currently reaches the levels of up to Gigabits per
second (Gbps), thereby leads to a higher throughput.

However, it is important to note that all of these features
involve certain tradeoffs between achieving higher throughput
and facing a higher error rate. More specifically, longer
aggregated frames can reduce more transmission overhead,
but also increase packet loss rate [3]–[5]. Particularly, only
A-MSDU suffers in error-prone channel since it contains only
one frame check sequence (FCS) for the whole aggregated
packet. Similarly, tradeoff also exists in PHY rate selection
[6], [7]. High PHY rate can lead to high throughput, but also
increase bit error rate (BER). While low PHY rate may suffer
from poor channel utilization and thus reduce throughput. In
addition, there is a certain coupling relationship between the
aggregation frame length and the physical rate, since both of
them impact the packet error rate. The optimal frame length
varies with the selection of rate [8], and vice versa.

Considering above, optimal frame length and rate need to be
determined jointly to address the tradeoffs. While such large
number of enhanced features and available sets makes finding
the best configuration for frame length and rate an extremely d-
ifficult challenge for conventional algorithms. However, recent
researches have disclosed that, machine learning algorithms
are well-suited for addressing multi-parameter optimization
problems. Moreover, IEEE has established a Topic Interest
Group (TIG) for Artificial Intelligence and Machine Learning
(AIML) in July 2022, which aims to apply ML technique to
optimize network performance in future Wi-Fi standard.

Although there are many research works in using ML to
optimize frame length or PHY rate, few have taken them into
consideration jointly. Chen et al. [6] models rate adaption
as a 3D maze problem, where the coordinates correspond
to spatial stream, bandwidth and MCS respectively. Two Q-
network, namely, DDQN and DQN, are applied to solve it.
However the frame length is not involved. Karmakar et al. [7]
proposed a multi-armed bandit (MAB) based online-learning
mechanism to optimize link configurations. The authors further
introduced an improved Thompson sampling algorithm in [9]
and fuzzy logic algorithm in [10] to improve their MAB based
scheme to solve link adaption. However, all of them focus on
A-MPDU aggregation instead of A-MSDU. Coronado et al.
[4], [5] applied two supervised learning (SL) models, namely,
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RFR and M5P, in frame size selection according to the MCS
and channel features. Nevertheless, this approach requires a
preliminary dataset acquisition and cleaning, which is not
universally applicable to Wi-Fi networks.

Motivated by the above observations, in this paper, we
propose a joint frame length and rate adaption (JFRA) scheme
to optimize the link throughput. Our main contributions are as
follows:

• We formulate the joint frame length and rate adaption
problem as a Markov decision process and apply double
DQN algorithm [11] to solve it. Our proposed scheme
can automatically explore the environment and learn the
optimal frame length and rate from experience.

• We incorporate the reward value into the experience
priority calculation for prioritized training [12], which
improves the learning efficiency and accelerates the con-
vergence of JFRA. The reward function is formulated by
scaling the throughput based on the channel quality and
transmission time, thus remains the same importance in
different environments.

The rest of the paper is organized as follows. In Section II,
we present the system model and formulate the joint frame
length and rate adaption as a Markov decision process with
state, action and reward function. In Section III, we describe
the detailed design of the proposed JFRA scheme. Section IV
illustrates the performance evaluation of the proposed JFRA
scheme comparing to Minstrel HT [13] and Thompson Sam-
pling [14] in terms of throughput and packet delay. Finally,
we summarize this paper in Section V.

II. SYSTEM MODEL

The system model is shown in Fig. 1. We consider a Wi-
Fi network consisting of a transmitter and a receiver. The
transmitter sends traffic to the receiver, while NBG additional
stations, referred as background (BG) STAs, generate back-
ground traffic to simulate more realistic scenarios. The BG
STAs act as interference nodes, which take part in channel
contention and data transmission, but their throughput is not
counted in performance evaluation. The BG STAs remain
stationary, and the distance between transmitter and receiver
could be either fixed or variable. In this paper, we suppose
AP is the transmitter and the the receiver is referred as target
STA. Our goal is to design a joint frame length and rate
adaption scheme that maximizes the link throughput from the
transmitter to the receiver.

The joint frame length and rate adaption problem can be
modeled as a Markov decision process which consists of an
agent, states, actions, and rewards. The agent is deployed at
the transmitter. For each time t, the agent observes the channel
environment at a state st ∈ S, and then selects an action at to
adapt the frame length and rate to the environment. After the
action-selecting, the agent receives a reward rt and the next
state st+1 at the beginning of next time period. The transition
et (st, at, rt, st+1) is then stored in experience buffer Be for
the DDQN model training.

Transmitter
(AP)

BG STA1

BG STA2

BG STAn

JFRA Agent

Observation
(Packet loss rate, 

TX time ratio, SNR)

Action
(Frame length, 

PHY rate)

Receiver
(Target STA)

Fig. 1. System Model

The state space S describes the channel condition, where
we use packet loss rate (PLR), signal-to-noise ratio (SNR) and
transmission time ratio (TTR) as the indictors. The former two
reflect the quality of the channel, while the latter reflects the
contention level of the channel. Specifically, PLR is calculated
via the number of transmitted frames nTX and the number of
received ACK frames nACK during the interaction time period
as follows:

plrt = 1− nTX/nACK (1)

TTR represents the ratio of the transmission time to the
interaction time period:

ttrt = tTX/tperiod (2)

where tTX represents the transmitting duration to the receiver
and tperiod represents the time interval for each interaction.
Then, the state can be formulated as: st = (plrt, snrt, ttrt).

The action space A maps directly to all of the possible
combinations of available frame lengths and rates. The action
for each time t can be formulated as: at = (lt, ratet), where
lt represents the frame length and ratet represents the rate
index. In this paper, we consider A-MSDU aggregation, thus
the frame length lt varies from minMSDU to maxMSDU
in an interval of Lseg. While rate index ratet encompasses
all the available physical rates determined by a tuple of
PHY features:⟨bw, gi, nss,mcs⟩, which corresponds to chan-
nel bandwidth, guard interval, number of spacial stream and
mcs index respectively.

Reward function is designed considering the throughput
performance. We normalize the throughput values to a real
number between 0 and 1. The reward function at time t is
formulated as:

rt =

{
Dt

rateideal
t ·ttrt

, if ttrt > 0

0, otherwise
(3)

where Dt represents the actual throughput and ttrt repre-
sents the aforementioned transmission time ratio. The ideal
rate rateidealt is determined by looking up the highest rate
according to the current SNR and pre-set BER threshold in a
BER-SNR table. This table is provided by IEEE P802.11 TGax
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[15]. The ideal rate rateidealt represents the ideal through-
put in different channel quality, while ttrt adjusts the ideal
throughput according to the channel contention level. Thus,
the reward values can keep the same importance in different
environments.

III. DESIGN OF JFRA SCHEME

JFRA scheme includes two phases, namely, training phase
and operating phase. In the training phase, JFRA agent is
required to explore the action and learn from the experience.
We add an additional noise to the selected action in order to
enable exploration. The noise follows the normal distribution
with the mean equal to zero and the standard deviation
decreases as the number of training iterations increases. This
is to balance the overhead of learning new experience and
maximize the performance.

The large number of available frame lengths and rates set
will increase the action space, thereby leading to a lengthy
training process. Considering this, we apply prioritized train-
ing to improve sample efficiency and accelerate the algorithm
convergence. Since the performance of Wi-Fi networks is
mainly affected by the instant reward, we additionally in-
corporate the reward values in priority calculation. Besides,
due to the consistent importance of the reward values, good
actions can be prioritized for training regardless of the channel
conditions. The priority value pi of transition ei is calculated
as:

pi = αri + |Qtarget (si, ai)−Qθ (si, ai)|+ ε (4)

where α is a discount factor of reward, the following absolute
value is TD-error, and ε is a small real constant that prevents
from never being sampled.

At every training step, a mini-batch b of transitions is
sampled. The probability of each transition being sampled is
proportional to its priority value:

Pi =
pi∑
k pk

(5)

where k is the total number of transitions in the experience
buffer. The TD-error of each transition is recalculated to
update its priority value after one round of training. In order to
lower the time complexity of transitions retrieval to O (log n),
the experience buffer is constructed as a sum-tree [12]. The
pseudocode for the training phase of JFRA scheme is as
Algorithm 1.

Once the training steps reach the threshold set by the user,
JFRA scheme enters operating phase. Note that the agent will
not perform exploration and updating during the operating
phase. The action noise is set to zero and the agent always
selects the best link configuration. It is worth remarking that
the training phase can be restarted if significant changes occur
in the environment and lead to a degradation in network
performance.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed algorithm
based on ns3-ai [16], a shared-memory based interface that

Algorithm 1: The training process of JFRA scheme
Initialize experience buffer Be constructed by a sum tree;
initialize Q-network with random weight θ and duplicate
to the target network θ−;
Define nt and nmax as the current training steps and the
max training steps;
while t < nmax do

Calculate snrt, plrt and ttrt as st;
sample noiset ∼ N

(
0, σ2

)
;

at ← argmaxatQθ (st, at) + noiset;
(lt, ratet)← at;
rt−1 ← Equation(3);
if train then

append (st−1, at−1, rt−1, st) to Be with max p;
b← prioritized samples from Be;
update θ ;
soft update θ−;
update pi and Be according to Equation(4);

end
σ ← σ(1− nt/nmax);
st−1 ← st;
at−1 ← at;

end

provides efficient and high-speed data exchange between the
Python-based AI frameworks and Network Simulator (ns-3).
More specifically, we adopted ns-3.37 to simulate 802.11ax
Wi-Fi network environment. JFRA scheme is implemented in
PyTorch. Then, ns3-ai is used to connect the Wi-Fi network
environment with JFRA scheme.

The network topology is shown in Fig. 1. All nodes are
equipped with 802.11ax protocol. The main simulation param-
eters in ns-3 are shown in Table 1. Note that JFRA scheme
can be easily extended to more rate features since it won’t
cause any qualitatively effect to our DDQN model.

TABLE I. ns-3 Simulation Parameters

Parameter Value

Frequency 5 GHz
Channel bandwidth 20/40/80 MHz

Guard interval 3200 ns
Number of spatial streams 1

MCS index HE-MCS 0 - HE-MCS 11
Max A-MSDU size 11398 Byte

Frame length interval Lseg 2000 Byte
payload size 1464 Byte
traffic source UDP traffic

traffic rate 200 Mbps
Distance of background STAs 5 m

Distance of target STA [5, 15, 20, 25, 30, 35, 40] m
Simulation time 50 / 150 seconds
Error rate model TableBasedErrorRateModel
Path loss model LogDistancePropagationLossModel

Propagation delay model ConstantSpeedPropagationDelayModel

Mobility model ConstantPositionMobilityModel
RandomWalk2dMobilityModel

Target STA velocity Uniform random variable [2-5] m/s
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The hyper-parameters of DDQN algorithms are shown in
Table 2. The neural network architecture simply contains a
hidden layer composed of two fully connected layers.

TABLE II. Hyper-Parameters of JFRA Scheme

Parameter Value

Hidden layer dimension 64 / 128
Interaction period 20 ms

Learning rate 5× 10−3

Soft update factor τ 1× 10−3

Reward discount factor γ 0.3
Batch size 64

Experience buffer Be size 5000
Priority factor α 0.5
Priority epsilon ε 1× 10−2

We evaluate the performance of JFRA in terms of MAC
throughput and data packet delay of the target STA. Two cases
are considered:

• A static scenario for different distances between AP and
the target STA. The number of BG STAs is set to 10;

• A dynamic scenario in which the target STA moves back
and forth within a range of 2 to 40 meters. The velocity is
determined by a uniform random variable within a range
of 2 to 5 meters per second. The number of BG STAs is
set to zero.

We compare the performance of the proposed JFRA scheme
to two baseline algorithms: Minstrel HT and Thompson Sam-
pling (TS), which are the default link adaption mechanism
in Linux system, and a multi-armed bandit based reinforce-
ment learning algorithm respectively. Minstrel HT adaptively
select the most suitable transmission rate for each STA by
tracking the probability of successfully sending a frame with
each available rate. While Thompson Sampling maintains the
number of successful and failed transmissions as the shape
parameters of beta distribution for each rate. To select rate for
transmission, TS samples a frame success rate from the beta
distribution for each rate and then selects the one with the
highest expected throughput. The frame length is set to the
maximum size in both baseline algorithms. Every simulation
is run 10 times and average results are utilized to eliminate
the effect of randomness.

A. Static scenario

Considering that each algorithm requires a data statistic
process (Minstrel HT, TS) or a training process (JFRA) to
reach the best performance, the simulation is divided into
two parts: the first 10 seconds are used for a warm-up for
each algorithm and evaluation is performed during the last
10 seconds. The throughput and delay comparison in static
scenario are shown in Fig. 2 and Fig. 3 respectively. Powered
by the DDQN model, JFRA can learn the best frame length
and rate in different channel condition. Minstrel HT suffers
from the exhausted random sample for other rates, whereas
JFRA always chooses the best data rate after sufficient explo-
ration. Comparing to Minstrel HT, JFRA achieves a throughput
gain from 12.6% to 21.3%, and reduces the delay by 4.2%

to 18.7%. The performance of TS severely deteriorates since
it fails to handle the transmission errors caused by frame
collisions. This will impact the actual success rate distribution
of each rate, leading to inaccurate rate selection. However,
JFRA can correctly learn the contending environment and
select the proper rate and frame length for transmission.
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Fig. 2. Throughput Comparison in Static Scenario
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Fig. 3. Delay Comparison in Static Scenario

B. Dynamic scenario

The mobility of target STA will cause the variation of
channel quality. Similarly, all the algorithms have been through
a training process with same duration. The evaluation results
of throughput and delay are shown in Fig. 4 and Fig. 5,
respectively. It can be seen that JFRA increases the throughput
by up to 60.4% comparing to TS, and up to 68.9% comparing
to Minstrel HT. Meanwhile, JFRA reduces the delay by up
to 38.2% comparing to TS, and up to 63.3% comparing to
Minstrel HT. This is because by learning the experience, JFRA
can timely select the best frame length and rate to adapt to
the varying channel, also avoid unnecessary rate exploration.
Through appropriate combination of frame length and data
rate, JFRA achieves a tradeoff between improving throughput
and reducing packet loss rate.

Furthermore, we analysis the algorithm convergence in
dynamic scenario by observing the throughput and the ac-
cumulated reward. As is shown in Fig. 6(a), the throughput
fluctuates drastically at the beginning due to the considerable
action noise used in the initialization of the algorithm. The
overall level of throughput is relatively low since most of
the actions selected are used for exploration. The continually
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Fig. 4. Average Throughput in Dynamic Scenario
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increasing reward in Fig. 6(b) indicates that JFRA agent is
performing better and better in frame length and rate selection
as the number of training iterations increases. Through reward
and TD-error based prioritized training, JFRA agent rapidly
learns effective actions for different channel quality. After 110
seconds, JFRA agent completes the training phase and starts
operating phase. Now JFRA agent consistently chooses the
best action, so both throughput and reward reach to a high
and stable state. Note that in static scenario, it only takes up
to 10s for JFRA scheme to converge due to the simplicity of
the stationary STAs and the fixed channel quality.
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Fig. 6. Convergence of JFRA in dynamic scenario

V. CONCLUSION

In this paper, we propose a joint frame length and rate
adaption scheme for 802.11 network based on the DDQN.
The proposed JFRA scheme can dynamically select the frame
length and data rate to adapt to the environment by learning the

experience, thus address the tradeoffs in frame aggregation and
several rate features. It balances the overhead of exploration
and exploitation through a decaying action noise. The reward
and TD-error based prioritized training helps JFRA rapidly
converge to the best frame length and rate in a large number of
available sets. We evaluate the JFRA in ns3-ai framework and
compare to Minstrel HT and Thompson Sampling algorithm
in both static scenario and dynamic scenario. The results
show that our proposed scheme outperforms the other two
algorithms, especially in dynamic scenario. The gain can be up
to 68.9% in terms of throughput and 63.3% in terms of delay.
This is attributed to its learning and dynamically adaptive
capabilities. The possible further studies include implementing
JFRA scheme on commodity hardware, and evaluating the
overall system performance with multiple distributed JFRA
agents operating within a same Wi-Fi network.
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