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Abstract—To provide various onboard entertainment services,
the ever-increased Internet contents to be exchanged among
remote data centers, roadside units (RSUs), and vehicles demand
reliable and fast content dissemination in the vehicular networks.
Edge pre-caching technology is expected to provide flexible and
low-latency content dissemination by allowing edge nodes (i.e.,
RSUs and vehicles) to pre-cache contents. However, the content
dissemination process of edge pre-caching still suffers from high
mobility and highly dynamic topology of vehicular networks. The
recently proposed platoon-based vehicular network has potentials
to mitigate the mobility challenges, but need to deal with multi-
hop wireless content dissemination’s latency and reliability issues.
Additionally, the network resources are limited in edge nodes,
whereas various onboard Internet services with different Quality-
of-Service (QoS) requirements share the same resource pool by
the same network resource scheduling policy, thereby decaying
the network performance. Based on the above observations, to
cope with the challenging content pre-caching problem under
diverse QoS requirements in a platoon-based edge vehicular
network, we firstly abstract two isolated virtual content service
slices with different QoS requirements based on network slicing
technology to provide on-demand customized services. Then,
we propose an intelligent deep reinforcement learning (DRL)-
based content pre-caching scheme, which optimally matches the
available communication resources and limited caching capacities
in the edge vehicular network. The scheme jointly considers the
impacts of content pre-caching policy and multi-hop wireless
transmission on the content pre-caching performance. Simulation
results show that our proposed DRL-based content pre-caching
scheme achieves a competitive performance of reliability and
latency comparing with other state-of-the-art algorithms.

Index Terms—Platoon-based Vehicular Networks, Mobile Edge
Caching, Content Pre-caching, Network Slicing, Deep Reinforce-
ment Learning

I. INTRODUCTION

Many applications and services for current and future
vehicular networks are data intensive (e.g., popular series),
reliability-sensitive (e.g., financial services), and latency-
sensitive (e.g., mobile games) [1]. As a result, the ever-
increased Internet contents to be exchanged among vehicles,
roadside units (RSU), and remote data centers require reliable
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and fast content dissemination. However, in rush hours or
traffic jams, direct content dissemination from remote data
centers in real-time may lead to unprecedented pressure (e.g.,
severe traffic load, interference, and congestion) on the fron-
thaul and backhaul links, and may also induce much latency.
Regardless of the type of vehicular services, popular contents
are likely to be repeatedly requested by different vehicles
and dominate mobile data traffic [2]. Owing to the fact that
these popular content requests are predictable, we can pre-
cache these popular contents (e.g., video streams and music)
at network edge nodes (e.g., RSUs and vehicles) during off-
peak hours and then provide them during peak traffic hours
[1], [3], [4], which is known as edge caching. For those highly
concurrent content requests, edge caching nodes can timely
retrieve out these contents saved in the edge and transmit them
to the requesting vehicle via vehicle-to-vehicle/vehicle-to-
RSU (V2V/V2R) communications. Such an edge pre-cached
solution can relieve the traffic loads over backhaul links, and
reduce network congestion and communication latency [5].

However, the high mobility of vehicles and the highly
dynamic topology of vehicular networks will lead to poor
link quality, unstable and intermittent connectivity, and even
frequent link failure issues of the V2V/V2R communications,
thereby impairing the content dissemination instantaneity and
reliability of edge pre-caching [6]. Caching multiple content
duplications [7] and mobility/trajactory predictions [8], [9] will
help to deal with the above issues. Caching multiple content
duplications can make more chances for mobile vehicles
to access the contents, however, the redundant caching and
disseminations will decrease resource utilization and cache
efficiency. The contact frequency/probability and contact time
duration obtained from mobility predictions are highly related
to the content serving probability of pre-cached contents and
are very valuable to guide the caching decisions. In addition to
these two important methods, the existing paradigm platoon-
based driving pattern of intelligent transportation system,
proposed for improving road capacity and energy efficiency,
has a unique advantage to mitigate the mobility issues by
decreasing the relative velocities between vehicles of V2V
communications and simplifying V2R communications.

Generally, a vehicle platoon is a group of autonomous
vehicles that follow the same path and maintain a com-
mon mobility pattern, typically, same speed alignment and
a fixed inter-vehicle distance in the order of 10m [10]–
[12]. To maintain the platoon-based driving pattern, based on
locally sensed/wirelessly collected vehicles’ kinematics data
(e.g., position, speed, acceleration, and steering information),
driving actions of platoon members (PMs) are regulated by a
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fully automated control system which installed in the in-front
vehicle of the platoon (i.e., platoon leader, PL). Cooperative
Adaptive Cruise Control is used for lateral (i.e., steering) and
longitudinal (i.e., acceleration and braking) controls, thereby
maintaining a desired platoon size, vehicles’ velocity, inter-
vehicle or inter-platoon distance [13], [14]. When the ve-
hicle’s speed changes, there may be platooning maneuvers
[10], [15](i.e., re-form, join/ leave, merge/split) introducing
disturbance. However, there have been existing studies on
platoon management protocols and strategies [16], [17] and
simulation results [10], [18] of platoon’s ability to adapt to
velocities’ disturbance and maintain platoon stability.

The traffic flow distribution is reshaped from individual
driving pattern to platoon-based driving pattern with uni-
fied system parameters for all platoon vehicles. Moreover,
traditional V2V and V2R communications are transferred
to intra/inter-platoon and platoon-to-RSU communications, in
which cooperative communication/caching applications can be
implemented to significantly improve the vehicular network
performance [11]. For instance, considering a well-formed
and stable platoon rather than individual vehicle, platoon’s
features of small relative speed and relatively constant inter-
vehicle distance make the intra-platoon V2V communications
a relatively static and stable scenario, avoiding link instability
during content dissemination. In addition, from the RSU’s
perspective, the platoon dynamics are transparent to the RSU
and it only observes different associated platoons. Only the
PLs are responsible for connecting RSU to provide Internet
access for other PMs. In high-mobility and dense scenarios,
it is better than all vehicles suffering from the intermittent
V2R connections and the severe fronthaul burden caused by
the signaling storm of group access and frequent handovers
[6], [19].

Although, the above advantages of the edge pre-caching
solution and the platoon-based topology can make contents
close to the consuming place and mitigate the mobility issue,
various onboard Internet services with different Quality-of-
Service (QoS) requirements demand different network re-
source configurations. The performance of the content pre-
caching depends on the subsequent corresponding content
dissemination process, and the content placement of the pre-
caching decision in turn plays a key role in this process. For
example, the reliability-sensitive service prefers network re-
sources with good wireless channel condition (e.g., congestion
or interference) to decrease signal to bit error ratio (BER) and
packet loss ratio, large coverage to support mobility, and large
buffer to decrease packet discard ratio. The latency-sensitive
service prefers large bandwidth, nearby server, and multiple
wireless transmission links. However, these different services
share the same resource pool by the same network resource
scheduling policy, thereby decaying the network performance.
Thanks to software-defined-networking (SDN) and network
function virtualization (NFV), network slicing enables the
coexistence of several virtual network slices with diverse
QoS requirements on top of the same physical infrastructure,
shifting “one size fit all” to “one size per service” by providing
isolated slices with independent protocol stack splitting and
resources allocation policy.

To reach the full potential of edge pre-caching in such
a network slicing-enabled platoon-based vehicular network,
we need to carefully deal with the following interplays of
edge caching, platooning, and network slicing, and propose
an intelligent and effective resource management algorithm
[20], [21]. Firstly, the interplay of edge caching and platooning
raises the multi-hop transmission latency and reliability issues.
Unlike most edge caching policies in individual driving pattern
just considering 1-hop wireless transmission, after pre-caching
popular contents offline in the platoon-based edge vehicular
network, the contents will be retrieved via multi-hop wireless
transmissions with multi-hop latency and reliability. Secondly,
the interplay of edge caching and network slicing introduces
the challenge of matching constrained and integrated cross-
domain multi-dimensional resources and slices’ traffic demand
to guarantee resource efficiency for all slices. It should be
noticed that in such communication and caching integrated
systems, due to different resource constraints of RSUs and
vehicles, both communication resources and caching resources
may become the network’s bottleneck. The caching utilization
will decrease due to either low transmission data rate or the
cache overflow [22]. Finally, to adapt to the varying nature
of the network and satisfy QoS requirements of different
slices, we need to intelligently allocate multi-dimensional
resources to each slice, in which the performance isolation for
QoS is important. Service-oriented optimal resource allocation
of virtual networks is known to be an NP-Hard problem.
Traditional model-based optimization or queueing theoretic
modeling becomes intractable [20].

In this paper, based on the NFV, SDN, and network slicing,
we firstly abstract different isolated virtual content service
slices (VCSSs) to provide on-demand customized services,
and model the service satisfaction utility function of the
content pre-caching optimization policy for each VCSS with
its specific QoS requirement. Then, to deal with complex
multi-dimentional data (e.g., various nodes with different mo-
bility patterns, network resources, and service requirements)
and efficiently solve the optimization problem, we prefer
a deep reinforcement learning (DRL)-based method rather
than traditional mathematical programming methods (e.g.,
combinatorial or mixed-integer nonlinear programming, graph
theory). Compared with the traditional mathematical program-
ming methods, the DRL-based method can interact with the
environment, use its multi-dimentional data and then provide
foresight pre-caching policy [23], [24]. With deep learning for
value function approximation, DRL does not need to model
the environment dynamics [25]. Once it is well trained, a DRL
agent can perform appropriate control action and pursue the
predefined objective [26], [27]. The main contributions of this
paper are as follows.

1) Based on the programmable control principle originated
from NFV and SDN, and caching theory originated
from mobile edge pre-caching, we propose an integrated
framework for the platoon-based edge vehicular net-
work. The framework can enable the dynamic orches-
tration of networking, caching, and communicating re-
sources to improve the content pre-caching performance
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of various services.
2) Based on network slicing technology, two VCSSs, which

are reliability-constrained content slice (RCCS) and
latency-costrained content slice (LCCS), are constructed
by an SDN controller. RCCS offers reliability-sensitive
content services while LCCS provides latency-sensitive
content services, and both share the same communica-
tion and caching resources. We formulate the content
pre-caching policy to a joint optimization problem for
these two VCSSs with the objectives to maximise the
reliability and minimize the latency, respectively.

3) To solve the above joint optimization problem, deep
Q-Networks (DQN), a DRL-based content pre-caching
algorithm with a DNN as Q action-value function ap-
proximator, is used to obtain the optimal pre-caching de-
cisions which optimally match with available communi-
cation resources under dynamic environment conditions.
With the experience reply mechanism, the mini-batch
method, and the target Q-network, DQN can prevent
local minimum by decreasing the dependence of the
samples from the memory of the experience replay, and
making the algorithm more stable.

The remainder of this paper is organized as follows. Related
work is reviewed in Section II. In Section III, we present the
framework of the platoon-based edge vehicular network and
describe the details of the system model. Then we formulate
the content pre-caching optimization problems of two different
VCSSs. We propose the DRL-based content pre-caching al-
gorithm in Section IV. We present the performance evaluation
and results analysis in Section V. Finally, Section VI concludes
this paper.

II. RELATED WORK

A. Mobile Edge Caching

Recent efforts have been made to study the edge caching.
The edge caching policy can be resource reservation-based
approach or resource share-based approach [28]. Dedicated
resources can be reserved in advance to guarantee slice isola-
tion and adapt to dynamic traffic demand in the reservation-
based approach. The resource reservation focuses on how
to maximize the profit between the revenue from users and
the resource reservation cost from the economic aspects,
and how to balance the reserved resource utilization (i.e.,
minimizing the influences of both over and under reservation)
and QoS satisfaction of network slices [29]–[31]. Two time-
scale resource reservation approach including long timescale
inter-slices resource reservation and short timescale intra-slice
resource allocation are investigated [32]. In addition, all the
resources can be reserved to become guaranteed resources
[33], [34], or keep an amount of resources unreserved and
sharable on a best-effort basis [20], [35]. Usually, guaranteed
resources are available in a large timescale (e.g., slice lifetime)
and the unreserved auxiliary resources are for short timescale
on-demand request [35]. However, there is a reservation-
allocation-utilization process (RAUP) in the above reservation-
based approach with following issues: 1) To ensure slice
isolation, the reserved storage space of a slice cannot be used

by any other slices, thereby existing over/under reservation
problems. 2) The ability of adaption to varying user demands
has a limitation. Only if the allocated resource is less than
the reserved resource, it can adapt to the sudden increase of
the user demand of the slice. 3) The RAUP may involve
different levels/timescales of resource reservation/allocation
which is time consuming and redundant. Hence, different from
the above reservation-based approach, we consider a share-
based approach in which an intelligent DRL-based algorithm
directly making pre-caching decisions at one-step without
RAUP, thereby achieving high-efficiency.

Edge caching also can be in an online way or in an
offline way. Online caching policy is real-time content caching
and dissemination only taking place after a user requesting
a content. This method is very sensitive to the real-time
network status and may bring high latency, low reliability, and
high traffic loads over fronthaul/backhaul links due to limited
communication/caching resources from edge networks to core
networks, burst traffic, and the instable wireless links caused
by vehicles’ mobilities [36]. Offline pre-caching policy caches
popular contents in advance of a user request at edge networks
(e.g., BSs/RSUs/vehicles) in a proactive way during off-peak
hours [36]. Since edge nodes can timely transmit contents to
requesting vehicles, this policy is suitable for wireless net-
works with temporal-spatial varying network utilizations and
can deal with highly concurrent content requests. However,
offline proactive pre-caching relies on the accurate prediction
of user traffic demands, content popularity, and user mobility
[37]. Hence, there are many researches focus on mobility
prediction (e.g., by Markov renewal process [8], Markov
chain [38], LSTM [9]) and user demands/content popularity
prediction (e.g., recommendation and push-based [37]). Based
on these researches, our work focuses on an offline content
pre-caching policy. Different from mobility prediction-based
method, we explore the potential of platoon-based vehicular
networks to overcome the high-mobility issues.

B. Vehicular Edge Caching

Y. He et al., in [39]–[45] studied the joint communi-
cation, caching and computing optimization with objective
of maximizing the system profit from an economic point
of view. M. Li, et al., formulated the joint optimization
of the networking, caching, and computing resources as a
POMDP to make offloading decision and the selection of
caching and computing node with the aim of minimizing the
network cost and computation time [46]. S. Zhang et al.,
proposed an air-ground integrated vehicular network slicing
framework with multi-dimensional heterogeneous resources,
in which high-altitude platforms (HAPs) proactively push
contents to vehicles through large-area broadcast, while the
ground RSUs provide high-rate unicast services on demand.
Their main purpose was to minimize RSU transmission rate
with delay requirements by investigating the tradeoff among
RSU transmission rate, HAP broadcast rate, and vehicles’
caching capabilities [22]. Y. Zhang et al., proposed an online
vehicular caching based on a two-dimensional Markov process
of the interactions between caching vehicles and mobile users
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to optimize network energy efficiency [47]. L. Hou et al.,
proposed an optimal caching strategy utilizing heuristic Q-
learning solution together with LSTM-based mobility predic-
tion to minimize the latency of caching services [9]. S. Zhang
et al., proposed a cache-assisted lazy update and delivery
scheme to balance content freshness and service latency in
vehicular networks [42]. J. Ma et al., proposed a content
placement strategy which jointly considered the caching at
the vehicular layer and RSU layer to minimize the average
latency [48]. Y. Hui et al., proposed a 2-hops relay-based
content dissemination scheme which applies first-price sealed-
bid auction [49].

However, there are obvious differences between the existing
caching methods of vehicular network and the proposed pre-
caching method of platoon-based vehicular network. Firstly,
most of the existing methods aim to maximize the system
profit from an economic point of view [39]–[41], [45], im-
proving energy efficiency [47], or only minimizing latency
[9], [48], [49], whereas our purpose is to maximize the QoS
satisfactions of transmission latency and reliability for differ-
ent virtual service slices. Secondly, some of the methods focus
on separated content caching [49] and content disseminations
[50], i.e., relay selection on V2V networks, and donot exploit
the joint influences of content placement and dissemination-
s. Thirdly, others of them study the content caching with
single-hop content retrieval from neighbor vehicles/RSUs/BSs
without exploring the joint impacts of content placement,
channel condition, and transmission bandwidth in the multi-
hop retrieval scenario. Whether considering the effects of wire-
less transmission hops determined by the content pre-caching
strategy on the content retrieval latency and reliability makes
our objective and constraints of the optimization problem quite
different from the existing works. Finally, there are some
cluster-based edge caching researches on user-centric networks
[51]–[53], where BSs/RSUs form a cluster and serve for one
user/vehicle, not the vehicles form a cluster/platoon. Hence,
the existing caching methods of vehicular network cannot be
directly applied to our slice-enabled platoon-based vehicular
network.

C. Edge Caching and Network Slicing

There have been extensive works on resource allocation
with/without network slicing, including separated or joint
communication, computation, and caching (i.e., 1C, 2C or
3C) resource allocation. The scenarios, network requirements,
challenges, and corresponding solutions are all very different
with their own research purposes. For example, the resource
managements include communication resource allocation [41],
[54], [55], caching policy, joint communication and caching
resources allocation [55], [56], and joint communication,
computing and caching resources management [39], [40],
[57]. There are also researches on slice admission control,
device association, computing offloading, joint communication
and computing resources management which are not highly
related to our work. Furthermore, these important issues are
investigated in various scenarios (e.g., Core networks [58],
RAN [57], [59]–[61], IoV [39], [40], [45], [54]–[56], [62])

with different selected optimization objective and constraints,
such as network profit [39], [43], [45], cache hit ratio [60],
service latency [55]–[57], [63], [64], transmission rate [60],
[64], energy efficiency [63], [65], spectrum efficiency [61].
Most of existing solutions formulate the 2C/3C resources
allocation as the convex optimization problem [64] or con-
strained (mix-)integer (non-)linear Programming nonconvex
optimization problem [56], [61], which is NP-hard. These
optimization problems are solved by the alternating direc-
tion method of multipliers (ADMM) [55], [64], Lyapunov
optimization method [56], matching theory [55], and Deep
Learning/RL/DRL-based algorithm [39], [40], [45], [54], [57],
[60], [61], [63], [64].

The differences between our work and the above existing
works are as follows. Firstly, they rarely investigated the
reliability performance of joint communication and caching
resources management. The reliability performance can be
measured by accumulated BER, handoff failed probability,
packet loss or discard ratio caused by multi-hop transmission,
bad channel condition (e.g., handoff and interference) or net-
work congestion. Secondly, most of existing works focused on
the channel allocation and transmitting power allocation and
did not explore much on the communication aspects of both
transmission hops and bandwidth. Thirdly, for those mobile
edge caching and communication joint optimization without
network slicing, they gave the same resource scheduling strat-
egy that optimized the same objective for all kinds of services,
which was not scalable. Fourthly, the optimization objective
of some existing works may include more than one metric
to support various QoS requirements of different services but
the utility was in the form of the sum of weighted metrics
with constant weight set, which was not scalable. Finally, they
chose different DRL algorithms for different reasons, and their
definitions of the state space, action space, and reward function
were also quite different for their own purposes.

III. SYSTEM MODEL

In this section, we propose a network slicing framework
for the platoon-based edge vehicular network and illustrate
the details of the network model, content requesting, pre-
caching, retrieval process, wireless propagation model, and
utility model of the sliced edge vehicular network.

A. Network Slicing Framework

According to [66], we propose a network slicing framework
for the platoon-based edge vehicular network as shown in
Fig.1. The network is divided into the core networks and
mobile edge networks. The core network refers to a cen-
tral SDN controller with network control and management
functions and its global database storing original contents
and historical information backups of the whole network.
The mobile edge network includes RSUs and platoons, which
are equipped with storages to provide edge caching function.
In the edge vehicular network, we consider a set of RSUs
B = {1, ..., b, ..., B} along the highway road segment, and a
set of linear platoons Kb = {1, ..., k, ...,Kb} associates with
RSU b. RSUs are connected via ideal optical connections,
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Fig. 1. Network Slicing Framework for Platoon-based Edge Vehicular Networks

and each platoon k has the same length and contains a set
of vehicles Ub,k = {1, ..., u, ..., Ub,k}. The caching capacity
of RSUs and vehicles are Cb and Cu, respectively, and the
caching capacity is divided into equal-sized caching slots.

We further assume that the entire physical infrastructures
and network resources (i.e., database, RSUs, vehicles, fron-
thaul/backhaul networks, and their caching, computing and
communicating capabilities) are owned by a single infrastruc-
ture provider (InP). NFV virtualizes the network functions
of these underlying physical infrastructures and network re-
sources to logical and programmable network functions (e.g.,
virtual storages and networks) in the form of virtual machines
(VMs), and this process is known as the NFV-based physi-
cal/logical transform abstraction as shown in Fig.1. Supported
by NFV, OpenFlow-based SDN splits the application plane, the
control plane, and the data plane. The data plane is composed
of switches (e.g., RSUs and vehicles), which cache/forward
data according to relevant policies. Network functions (e.g.,
resource and mobility management) run in the VMs of the
application plane. Through the SDN Northbound Interface, the
application plane obtains network resources from or sends data
to the lower layer. The control plane periodically updates new
network policies on the switches of the data plane through the
SDN Southbound Interface and maintains a global database
of the data plane and application plane. Then based on the
network slicing technology, the SDN controller constructs
VCSSs (i.e., mobile virtual network providers, MVNPs), each
of which supports a specific type of content service with its
guaranteed QoS (e.g., transmission reliability or latency) [39],
[43], [67]–[69]. The detailed principle, technology and practice
of SDN, NFV, and network slicing can refer to [70], [71].
The set of VCSSs is defined as V = {1, ..., v, ..., V }, each
slice v has its own unique set of content segments Ov =

{1, ...ov, ..., Ov}. The size of a content segment is represented
by Os and is equal to a caching slot [64]. Particularly, we
consider two VCSSs which are RCSS and LCSS in this paper.

Specifically, the main roles of the central SDN controller
are as follows:

1) Map the physical network resources to virtual logical
resources via the technologies of SDN and NFV.

2) Determine and adjust network management and slicing
policies according to the data processing and analyzing
results of the global database and install these policies
to switches and local controllers (i.e., RSUs).

3) Cooperate with local controllers to construct VCSSs on-
the-top of the virtual network resources [57].

4) Allocate isolated virtual resources to each VCSS based
on its QoS requirement.

To cooperate with the central SDN controller for resource
virtualization and network slicing, there is a local controller
placed at the RSU. It collects and monitors local information
(e.g., available communicating and caching resources, channel
condition, content requests, and positions and mobilities of its
associated platoons) of the edge vehicular networks and sends
data reports to the SDN database for future data processing,
analysis, and policy adjustments.

B. Content Requesting, Pre-caching, Retrieval Process

The whole content requesting, pre-caching, and retrieval
process is described as follows:

1) Online content requesting phase: During this process,
vehicles initiate content requests to the PL. Then the PL
maintains a requesting queue and executes online content
retrieval phase. Meanwhile, the PL records these historical
content requests together with other local information (e.g.,
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available communicating and caching resources, channel con-
dition, and platoon’s position and mobility) to form a content
request profile (CRP) and then uploads it to its associated
RSU. The RSU collects these local historical CRPs from all
its associated platoons and then uploads them to the SDN
database and controller to predict future CRPs and network
status. We define the set of vehicles requesting contents from
the slice v as Uv = {uvb,k|∀b ∈ B,∀k ∈ Kb,∀u ∈ Ub,k} =
{1, ..., uv, ..., Uv} , v ∈ V, where uvb,k represents the status of
vehicle u of platoon k requesting contents from slice v. We can
predict the upcoming content request and its popularity from
the data processing and analysis of historical CRPs recorded in
the SDN global database. The content request arrival process
is assumed to follow a Poisson process with an average rate
of µ (requests/s). The content popularity is assumed to be a
Zipf-like distribution with a parameter α. Hence, the predicted
popularity of the o-th popular content is po = 1

oα
∑O
c=1

1
cα

. We
assume that the average arrival rate of requests and predicted
content popularities are recorded in the predicted CRP, and
keep static in a relatively long period [72]. Hence, we have a
content pre-caching task for each predicted content request.

2) Offline content pre-caching phase: During this process,
according to the predicted CRPs and network status, local
controllers in RSUs make pre-caching decisions according to
the installed content pre-caching policy. Through fronthaul
and backhaul connections with the backbone, the RSU and
its associated platoon pre-cache forthcoming popular contents
during off-peak traffic hours. For any pre-caching task, the
pre-caching policy only involves vehicles of the same platoon
u′ ∈ Ub,k and the platoon’s associated RSU b, that is to say
other RSUs have no effect on the pre-caching task’s decision
of the vehicle ub,k. The pre-caching policy is controlled by two
binary parameters, Zb and Zk,u. Zb = 1 indicates that content
is cached in RSU b, and 0 otherwise. Zk,u = 1 indicates that
content is cached in vehicle u of platoon k, and 0 otherwise.

We apply the Last Recently Used content replacement
mechanism for RSUs’ or vehicles’ storages. Besides, since
vehicles in the same platoon can communicate via V2V
wireless communications, we abstract all vehicles’ caching
capacities of a platoon into a logically centralized caching
unit which is managed by the PL. Compared with using each
vehicle’s caching capacity independently in a distributed way,
this can improve the caching utilization for its fewer content
duplications, more content diversity, and less frequent content
removal [73]. The impact of the multi-hop V2V wireless
communications on the final content pre-caching performance
(i.e., reliability and latency) will be explored later.

3) Online content retrieval phase: During this phase, a
vehicle can retrieve the pre-cached contents via V2R or
V2V communications in the edge vehicular networks [74]. It
should be noted that the edge vehicular network only allows
content retrieval from RSU or within the platoon, that is to
say there is no content retrieval between platoons, thereby
avoiding operation on unstable V2V links of inter-platoon
communications caused by platoons’ relative mobility. The
content retrieval phase includes the following stages:

a) Wireless Intra-Platoon Content Retrieval, WIPCR: If the
vehicle’s requested content is pre-cached in the platoon, it

will be retrieved from vehicles in the same platoon via V2V
communications.

b) Wireless Cellular Content Retrieval, WCCR: If WIPCR
fails, the PL tries to retrieve the desired content from the
associated RSU via V2R communications.

If both WIPCR and WCCR fail, in other words, if the
content is not pre-cached in the edge vehicular networks,
it is needed to originally retrieve the desired content from
the remote database to the requesting vehicle. According to
whether the content is pre-cached and where the content is
pre-cached (i.e., RSU, or vehicles within the platoon), the
whole content retrieval phase may be a combination of the
two stages. Hence, the online content retrieval phase will
experience different QoS performance due to different offline
pre-caching decisions.

C. Wireless Propagation Model

1) Sub-6GHz wireless propagation model for WCCR stage:
In the WCCR stage, the stable communication duration (SCD)
is calculated, that is, the time duration that the platoon stays
within the coverage of RSU. SCD can be obtained by the
positions of the platoon and the RSU, the coverage of RSU,
and the platoon’s constant speed, which are collected by local
controllers at RSUs [74]. Within the SCD, there is no V2R
link failure caused by the relative mobility between the platoon
and the RSU. For the platoon’s handover between RSUs, the
neighbor RSUs are connected via ideal wired connections, and
pre-cached contents can be transmitted among RSUs before
handover happens. In this paper, we focus on the content pre-
caching policy rather than the handover management. Each
RSU has a total bandwidth Wb (Hz) in sub-6GHz (e.g.,
2.4GHz) for V2R communications. Let Yb,k ∈ [0, 1] be the
percentage of bandwidth RSU b allocated to the platoon k, and
then W c

b,k = Yb,kWb represents the bandwidth of platoon k for
its V2R communications during SCD. Due to platoons driving
in a highway road segment and we assume that the spectrum
allocation of inter-RSUs and intra-RSU are all independent
and orthogonal, the inter-RSUs and inter-platoon interference
can be ignored. Then, the effective WCCR data rate of platoon
k, which the requesting vehicle u belongs to, can be expressed
as Rcb,k.

Rcb,k =W c
b,klog2(1 + SNRb,k) (1)

SNRb,k =
Pb,kGb,k
PN

(2)

where SNRb,k is the signal-to-noise-ratio. Pb,k is the trans-
mission power in mW. Gb,k is the channel gain. PN is the
thermal noise power in mW. And

PN [mW ] =W c
b,k[Hz] ∗ 10

N0[dBm/Hz]
10 (3)

Gb,k = 1/Lb,k[dB] (4)

where N0 is the background noise power spectrum density,
as a standard temperature of 17 °C, the thermal noise level
is N0 = −174[dBm/Hz] [74]. η is log-norm shadow fading
with mean zero and standard deviation σ = 7dB. Lb,k[dB] is
the path loss and can be obtained by

Lb,k[dB] = 20log10(d) + 20log10(F ) + 32.4 (5)
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where d is the distance between the receiver and transmitter
in km. F is the frequency band in MHz [64].

2) mmWave wireless propagation model for WIPCR stage:
In the WIPCR stage, each RSU allocates independent and
orthogonal mmWave spectrums (e.g., 60GHz) to their asso-
ciated platoons for their intra-platoon V2V communications.
PL controls WIPCR in the platoon, and the spectrum is time-
division multiplexed within the platoon. In the relatively static
V2V communication scenario, front and rear vehicles have
line-of-sight path and use mmWave directional narrow beam
for transmission. Hence, the inter/intra-platoon interferences
can be ignored. The bandwidth that RSU b allocated to its
platoon k for WIPCR is denoted by W p

b,k. Then, the effective
WIPCR data rate can be expressed as Rpb,k

Rpb,k =W p
b,klog2(1 + SNRuu′) (6)

where the SNRuu′ is the SNR between vehicles.
We assume that mmWave V2V links use directional beam-

s with antenna directional transmit gain and receive gain
Gx, x ∈ {t, r} [74],

Gx =

{
2π−(2π−ϕx)gs

ϕx
, |θx| ≤ ϕx

2

gs, otherwise
(7)

where θx is the beam offset angle to the mainlobe. ϕx
represents half-power beamwidth of the transmit beam or the
receive beam. 0 < gs � 1 is the sidelobe gain.

We can have SNRuu′ by

SNRuu′ =
Puu′Guu′GtGr

P
′
N

(8)

where Puu′ is the transmission power in mW. Gt and Gr are
transmit antenna gain and receive antenna gain, respectively.
Guu′ is the channel gain and P

′

N is the thermal noise power
in mW, they can be obtained by Eq. (3)-(5). For mmWave
frequency, it should be noted that d and F in Eq. (5) are in
m and in GHz, respectively.

It should be noted that the physical topology of platoon
vehicles may not be linear, but it can be abstracted into a
logical linear topology. The linear network topology represents
how platoon vehicles exchange information and not their
positions on the road. Different platoon’s physical topologies
will affect the communication interferences, whereas the pla-
toons length will affect the number of V2V transmission hops
experienced in the content retrieval process. The spectrum
allocations are all independent and orthogonal in the V2R
communications, and intra-platoon V2V communications use
mmWave directional narrow beam in a time-division multi-
plexed way, thereby the inter/intra-RSU and inter/intra-platoon
interferences can be ignored. This is because the aim of
this paper is the optimal pre-caching policy rather than the
interference management. Hence, the linear platoon topology
is typical and the length of platoon can be different.

D. Utility Models of the Two VCSSs

In this section, for a pre-caching task of content o in
the offline pre-caching phase, the pre-caching performance is

represented by the online content retrieval satisfaction (i.e., re-
liability or latency satisfaction) for vehicle u to retrieve content
o from RCSS or LCSS. The pre-caching performance is related
to the content popularity and content serving probability of
the caching aspect and the transmission hops and transmission
bandwidth of the communication aspect. The content serving
probability ps is defined as the probability of the pre-cached
contents responding for content requests. Except for the con-
tent popularity, other factors are all determined by the content
pre-caching decision. In this paper, we focus on the edge pre-
caching performance and thus we omit the case of original
content retrieval from remote database when formulating the
utility models.

1) Reliability Satisfaction of the RCCS: We map the un-
certain wireless propagation environment of each hop as BER
(i.e., 0 ≤ Pv2r, Pv2v � 1 for WCCR phase and WIPCR phase,
respectively), which can be inferred by the SNR. Since the
relevant mobility between platoon vehicles is approximately
0, while relevant mobility between vehicle and RSU is much
higher. Pv2v of intra-platoon V2V links in the WIPCR phase
are same, and Pv2r of V2R links in the WCCR phase is larger
than Pv2v .

If the requested content is pre-cached within the platoon
(i.e. Zk,u = 1), we formulate the reliability as Pcor which is
calculated as

Pcor = (1− Pv2v)hv2v

= (1− Pv2v)(1− Pv2v)(1− Pv2v) . . .
= (1− 2Pv2v + P 2

v2v︸︷︷︸
Pv2v�1,P 2

v2v
∼=0

)(1− Pv2v) . . .

∼= (1− 2Pv2v)(1− Pv2v)(1− Pv2v) . . .
∼= (1− 3Pv2v + 2P 2

v2v︸ ︷︷ ︸
Pv2v�1,P 2

v2v
∼=0

) . . .

∼= 1− hv2vPv2v

(9)

where hv2v is the number of V2V hops from the vehicle who
pre-cached the requested content (i.e., replying vehicle) to the
requesting vehicle.

If the desired content is pre-cached in the associated RSU
(i.e. Zb = 1), Pcor can be calculated as

Pcor = (1− Pv2r)(1− Pv2v)hv2v

= (1− Pv2r)(1− Pv2v)(1− Pv2v) . . .
= (1− Pv2r − Pv2v + Pv2rPv2v︸ ︷︷ ︸

∼=0

)(1− Pv2v) . . .

∼= (1− Pv2r − Pv2v)(1− Pv2v) . . . ]
∼= (1− Pv2r − 2Pv2v + Pv2rPv2v + P 2

v2v︸ ︷︷ ︸
∼=0

) . . .

∼= (1− Pv2r − 2Pv2v) . . .
∼= 1− Pv2r − hv2vPv2v

(10)

However, improving Pcor of non-popular contents does
not contribute a lot to the system reliability performance
while wasting caching resources. Moreover, contents prefer
to be pre-cached in a certain place to improve their serving
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probabilities ps for upcoming requests. Hence, the multi-
hop reliability utility function is weighted by po and ps to
demonstrate their influences on reliability performance:

Prel = popsPcor (11)

Then, if we consider a pre-caching task of predicted request
of content o from vehicle u, after the offline pre-caching phase,
the online content retrieval reliability satisfaction of vehicle u
retrieving the pre-cached content o from RCSS (i.e., slice v1)
is defined as Satv1u,o.

Satv1u,o = ξ(Prel) =
1

1 + exp(−κ (Prel − τrel))
(12)

where κ is the steepness constant, τrel is the reliability
satisfaction requirement. Here, we use the sigmoid function
to normalize the values of Prel, thereby making them range
from 0 to 1 with the average around the reliability satisfaction
requirement τrel.

2) Latency Satisfaction of the LCCS: According to the two
content retrieval stages, we divide the content retrieval latency
into two parts: (a) WCCR latency db,k = Os

Rcuk
, which is the

time needed to retrieve the content from the associated RSU to
the PL, and (b) WIPCR latency dk,u = hv2v

Os
Rpuk

, which is the
time needed to retrieve the content from the replying vehicle
to the requesting vehicle by multi-hop V2V communications.

With considering the influences of po and ps, the multi-hop
latency utility function is formally calculated as:

du =

{
dk,upops, if Zk,u = 1

(db,k + dk,u)pops, if Zb = 1
(13)

As such, the latency satisfaction of vehicle u retrieving
content o from LCSS (i.e., slice v2) is

Satv2u,o = ξ(du) =
1

1 + exp(−κ(qd − du))
(14)

where qd is the latency satisfaction requirement.
Then, to maximize the satisfaction of each slice, we formu-

late the content pre-caching optimization problem as follows:

max Satv

=
1

V × Uv ×Ov

∑
v∈{v1,v2}

∑
u∈Uv

∑
o∈Ov

Satvu,o

(15)
s.t. Prel ≥ τrel (15a)

do ≤ qd (15b)∑
k∈K

W c
b,k ≤Wb,∀b (15c)

where Satv is the overall satisfaction utility function.

IV. DRL-BASED PRE-CACHING SCHEME FOR
MULTI-SLICED EDGE VEHICULAR NETWORKS

Usually, the above joint optimization problem is solved by
traditional mathematical programming methods. Nonetheless,

these methods may suffer from the following issues [23], [24],
[75]:

1) The increasing diversity and complexity of resources and
service requirements make it challenging to model the
problem and balance the performance even with many
imperfect assumptions that some key information factors
are given.

2) It is difficult to adapt to the highly complex dynamic
environment of edge vehicular caching and communi-
cating.

3) Most mathematical programming methods are non-
convex and NP-hard problems. There is no efficient al-
gorithm to solve them with polynomial time complexity
and being executed in real-time.

4) Except for Lyapunov optimization, most of them are
built-in one-shot optimization, so they do not apply well
for long-term performance.

Hence, in this paper we model the above joint optimization
problem as a Markov decision process (MDP), which is a
powerful dynamic optimization theory to obtain the optimal
resource control policy in terms of the long-term average
performance. In MDP, a decision maker or agent can interact
with the environment by making a sequence of actions to
optimize a predefined system performance criterion. However,
MDP needs prior knowledge of the environment model (i.e.,
state transition probability and immediate reward). It also suf-
fers from the curse-of-dimensionality problem that the MDP
model’s state space and the computation complexity increase
exponentially with the growing number of vehicles. Therefore,
we use deep Q-Networks (DQN), a DRL-based method, to
solve the optimization problem with its good generality and
scalability. DQN does not need the priori knowledge of the
environment model. It chooses the action according to the
current observed environment and the samples of the system
states and rewards from the experience replay policy [76].

Without considering the interference management and han-
dover management, the scenario of multiple RSUs and mul-
tiple platoons is simplified into many independent scenarios
of 1 RSU and multiple platoons. Based on the optimization
problem, we define the state, action and reward of DQN as
follows:

A. System State Space

System state S is a finite state space consisting a set of
parameters that can describe the environment. According to
the predicted CRP and the network status, for the upcoming
requesting content o ∈ Ov recorded in the predicted CRP, we
define the system state as so(so ∈ S):

so = {v, u, k, b, po,W c
b,k,W

p
b,k, C

a
b ,C

a
uk
} (16)

where v, u, k and b are the index of the VCSS, the requesting
vehicle, its platoon, and its associated RSU, respectively. po
is the requested content’s popularity. W c

b,k and Wp
b,k are the

bandwidths of RSU b allocated to the requesting platoon k(k ∈
K) for its V2R and intra-platoon V2V communications. Cab
and Ca

uk
are the available caching capacities of RSU b, and

the vehicle uk(uk ∈ Uk) of the requesting platoon k.
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Fig. 2. An illustration of the Deep Q-Network based optimization framework

B. System Action Space

System action A is a finite action space from which the
agent makes a content pre-caching action ao(ao ∈ A) under
current system state so, and it is defined as:

ao = {ak,b, ak,1, ..., ak,uk} (17)

where ak,b ∈ {0, 1} and ak,b = 1 denotes that the content
is pre-cached in the requesting platoon’s associated RSU b,
and 0 otherwise. ak,uk ∈ {0, 1} and ak,uk = 1 represents pre-
caching the content locally on the vehicle uk of the requesting
platoon k, and 0 otherwise.

C. Reward Function

Reward R is an immediate reward matrix that gives immedi-
ate reward signals ro(so, ao) or ro, ro ∈ R for short, to indicate
which action is good in an immediate sense. After the agent
taking a pre-caching action ao for the upcoming requesting
content o under the environment state so, the content will be
retrieved by the requesting vehicle, and the agent will obtain an
immediate reward ro as defined in the utility functions, which
are the reliability satisfaction Satv1u,o and latency satisfaction
Satv2u,o.

D. Algorithm Design

The goal of DQN is to find an optimal pre-caching place
ao = π(so) for the upcoming requesting content, so as to
maximize the long-term reward. Unlike immediate reward
signals, the long-term return is defined as a value function
in the form of a prediction of the expected, accumulative,
discounted, future reward. There are two kinds of value

functions which are state-value function v(so) and action-
value function (i.e., Q-value) Q(so, ao) measuring how good
each state, or state-action pair is. DQN uses a DNN with
parameters θ to approximate the mapping from the current
system state so to the value function Q(so, ao|θ) of all possible
actions. In state so, DQN chooses the action ao by ε-greedy
policy with ε decreasing linearly. The ε-greedy policy means
that the agent chooses the action with the largest Q-value
Q(so, ao|θ) with a probability of (1− ε), and equally chooses
the other actions with a probability of ε [58]. Then, the action
is executed with returning a reward ro and the next state s′.
DQN uses experience reply to store the agent’s experience
(so, ao, ro, s

′) at each time step in a reply memory. Then it
uses a random sampled mini-batch of transitions (so, ao, ro, s′)
from the replay memory to train DNN. We use gradient
descent approach to update the parameters θ of DNN which
minimize the Huber Loss between the current predicted Q-
value Q(so, ao|θ) and target Q-value ro + γmaxa′ Q(s′, a′),
where γ is a discount factor reflecting the present value of
future rewards. The Huber Loss function is defined as:

Lδ(y
′, y) =

{
1
2 (y
′ − y)2 for |y′ − y| ≤ δ

δ|y′ − y| − 1
2δ

2 otherwise (18)

where y′ is the target Q-value and y is the current pre-
dicted Q-value. In this way, The predicted Q-value directly
approximates to the optimal Q-value Q?. Experience reply
and mini-batch can prevent local minimum by decreasing the
dependence of the collected experiences.

Furthermore, DQN uses a second neural network to cal-
culate the target Q-value with independent parameters θ′ that
are only updated periodically (i.e., every Tu time steps) instead
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of every single time step to reduce the correlations between
the predicted Q-value and the target Q-value, and thus the
network becomes more stable. The modified target Q-value is
ro+γmaxa′ Q̂(s′, a′|θ′). With experience replay and fixed Q
target network, DQN can learn more from the past experience
and improve its stability and convergence. Fig. 2 illustrates
how our proposed DQN works, and we give the pseudo code
of our DRL-based content pre-caching algorithm in Algorithm
1.

Algorithm 1 :DRL-based content pre-caching algorithm

1: Initialize the experience replay buffer M of size SM ; the
mini-batch B of size SB < SM ; a primary DQN and a
target DQN with two sets of parameters θ and θ′ = θ .

2: // Initialize the replay memory M by random policy
3: if the replay memory is not Full then
4: The agent observes the state so and then randomly

selects a pre-caching action ao(so);
5: Apply the action ao(so) to the environment to obtain

the reward ro(so, ao) and observe the next state s′;
6: Store the experience tuple (so, ao, ro, s

′) in the experi-
ence replay buffer M ;

7: end if
8: for all available episodes do
9: for all time steps do

10: The agent observes a state so and then picks a pre-
caching action ao(so) by the ε-greedy policy;

11: Execute the action ao(so) to the environment to
obtain the reward ro(so, ao) and observe the next
state s′;

12: Store the experience tuple (so, ao, ro, s
′) in the ex-

perience replay buffer M to update it;
13: // Updates the DQNs’ parameters
14: Randomly sample mini-batch samples B from mem-

ory M , i.e., sampling (so, ao, ro, s
′) from memory

M ;
15: for all B samples (so, ao, ro, s

′) in the mini-batch
transitions do

16: if the current episode ends at time step i+1 then
17: set the target Q-value y′ = ro
18: else
19: set y′ = r(so, ao) + γmaxa′ Q̂(s′, a′|θ′);
20: end if
21: Conduct gradient descent with Huber Loss to up-

date parameters θ of primary network;
22: end for
23: The agent regularly reset θ′(i+ 1) = θ(i) every Tu

time steps, and otherwise θ′(i+ 1) = θ′(i);
24: Update scheduling time step index by i = i+ 1;
25: end for
26: end for

E. Complexity Analysis

The complexity of our proposed algorithm mainly contains
two parts, the one is the complexity of Q-network to predict
the Q-values, and the other is the complexity of training
the Q-network. In the simulation, we assume that there
is only one content pre-caching task in a time slot. For

each task, the agent predicts all the Q-values in terms of
content pre-caching actions according to the system state. In
our proposed algorithm, the Q-network predictor contains
two hidden layers with the number of neurons L1 and
L2, respectively. From Eq. (16), the dimension of state
space is (7 + |Kb|+ |Ub,k|). After obtaining the platoon
index k of a received pre-caching task from the observed
state, from Eq. (17), the dimension of action space is
(1 + |Ub,k|). Then, the complexity of Q-value generation is
O ((7 + |Kb|+ |Ub,k|)L1 + L1L2 + L2 (1 + |Ub,k|)).
Since the size of hidden layers in our system is
fixed, the complexity of Q-value generation can be
given as O (8 + |Kb|+ 2 |Ub,k|) = O(N), N =
max {8, |Kb|, 2 |Ub,k|}. In the training process of Q-
network, there are T time slots in a period, then the
Q-network will be trained in T time steps. In each time step,
the complexity is similar to the Q-value predictor. Finally,
in a period, the complexity of our proposed algorithm is
O(NT ).

It should be noted that our major innovation/contribution
is not on the DRL-based algorithm itself, but on problem
formulation of multiple slices’ content pre-caching optimiza-
tion in the platoon-based edge vehicular network and its
transformation to a standard DRL problem for solution through
the corresponding definitions for the state, action and reward
in Eqs. (16-17).

V. SIMULATION AND ANALYSIS

We adopt the DRL-based algorithm to solve the optimiza-
tion problem Eq. (15) and evaluate the content dissemination
performances of RCCS and LCCS in the platoon-based edge
vehicular network. The experiment parameters are shown in
Table I. Unless explicitly stated otherwise, these simulation
parameters are used to obtain all the results. According to [77],
the edge caching scheme can be classified into three types,
namely, infrastructure supported, user device/vehicle sharing
enabled, and a hybrid type. Although there are no pre-caching
schemes devised for the considered platoon-based vehicular
networks, there are hybrid edge caching schemes that investi-
gating the cooperation caching of individual vehicles (e.g., fog
caching) and RSUs (i.e., edge caching). The main difference
of our paper is that we consider platoons instead of individual
vehicles. In addition, since the performance improvement of
our work is the result of the pre-caching optimization policy
rather than the improvement of DRL algorithm itself, it seems
not vital to compare our method with other DRL algorithms.
Therefore, in this paper, to demonstrate the effectiveness of
our proposed content pre-caching policy, we compare the pre-
caching performance of the proposed DRL-based method with
four state-of-the-art methods.

1) Platoon-based RSU Supported Method (PRS
Method) [78], [79]: The method always chooses RSU
as the pre-caching places for all contents.

2) Platoon-based Vehicle Sharing Method (PVS
Method) [80], [81]: The method randomly chooses
platoon vehicles as the pre-caching places for all
contents.
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3) Platoon-based Random Hybrid Method (PRH
Method): The method pre-caches content either in the
RSU or in platoon vehicles in a hybrid way, and chooses
pre-caching places for contents randomly.

4) Individual-driving Optimized Hybrid Method (IOH
Method) [82], [83]: The method optimally chooses
either RSU or individual vehicles in a hybrid way as
the pre-caching places for contents to maximize the
objective performance.

In addition, for comparison, we define that the Platoon-based
Optimized Hybrid Method (POH Method) is the proposed
method in which contents are pre-cached either in the RSU
or platoon vehicles in a hybrid way, and chooses optimal
pre-caching places for contents to maximize our objective
performance. The POH-Eval Method is the evaluation process
after the DQN model is well trained.

TABLE I
SIMULATION PARAMETERS

Symbol Value
|V | 2
|K| 4
|Uk| 4

Cb, slots 100
Cuk , slots 10
Os, Mb 1
µ 10
α 1.5

fc for V2R, GHz 2.4
fc for V2V, GHz 60

Wb, MHz 20
Ykb [0.1,0.2,0.3,0.4]

Wk
p , GHz 2.16
Pb, mW 31.62
Puu′ , mW 5

ϕx, x ∈ {t, r} 5◦

Pv2r 0.0022
Pv2v 0.0011
pus 4
pbs [2,12]
κ 2

Parameters for DNN
Huber loss, δ 1

Learning rate, αlr 0.00025
Memory size, SM 5000

Batch size, SB 64
Discount factor, γ 0.99

εmax 1
εmin 0.01

Decay speed of epsilon, λ 0.001
Target NN’s parameters updating period, Tu 100 time steps

A. The Reliability Satisfaction of the RCCS

We mainly study the impacts of transmission hops, trans-
mission bandwidth, content popularity, and content serving
probability on the reliability satisfaction. It should be noted
that the content serving probability ps can be affected by
the vehicles/platoons mobilities or the temporal-spatial traffic
densities and can be obtained/inferred by mobility/trajectory
predictions of real trace experiments or simulators (i.e., One
Simulator [84]). However, its time-varying value should not
affect the effectiveness of our proposed optimization model
and the DRL-based algorithm. Hence, the content serving

probability of the platoon vehicles and the RSU are set to
different values in Fig.3 to validate their different influences.

Fig.3 shows the accumulative reward varying with the
number of content requests, in which the content serving
probability of RSU is higher than that of platoon vehicles in
the first 5000 content requests. We can see that the reliability
satisfactions of the PVS Method and the PRS Method are
mainly influenced by their different transmission hops and
content serving probabilities. The PVS Method pre-caches all
contents in the platoon vehicles, so it has fewer transmission
hops than the PRS Method in most cases. However, due to
RSU’s content serving probability is higher than the platoon
vehicles’ in the first 5000 content requests, from Eq. (11), in
this case, we can know that the content serving probability
plays a more significant role than the transmission hops on
the reliability satisfaction. Hence, the PRS Method’s reliability
satisfaction is better than the PVS Method’s. In the next
5000 content requests, the content serving probability of RSU
gradually decreases to be lower than that of platoon vehicles.
We can see that the accumulative reliability satisfaction of
PRS Method also decreases to be lower than that of the PVS
Method gradually, and the performance of PRH Method is
always between them for the reason that the caching decisions
of PRH Method are combinations of caching decisions of PVS
Method and PRS Method. The reliability satisfactions of the
PRS Method and the PVS Method vary according to different
content serving probability settings. However, no matter how
the parameters are set, the proposed POH Method always have
the best reliability satisfaction adaptive to the content serving
probability.

In Fig.3, the reliability satisfaction of the IOH Method is
the worst for the following reasons: 1) There is higher relative
speed of V2V communications in the individual driving pattern
than the platoon-based driving pattern. Furthermore, the V2V
communications in the individual driving is based on the
Carrier Sense Multiple Access/Collision Detect (CSMA/CD)
rather than centralized control by PL in platoon-based driving
pattern. Hence, the channel condition (e.g., collision, conges-
tion, interference) of V2V communications in the individual
driving pattern is worse than that in the platoon-based driving
pattern. Hence, the SINR and BER is higher, thereby the
reliability satisfaction decreases. 2) The higher relative speed
of V2V communications in the individual driving pattern
results in shorter SCD. The content sharing between vehicles
may fail if the SCD is shorter than the content transmitting
time, thereby decreasing the content serving probability and
the reliability satisfaction. 3) The storages of the individual
driving vehicles are used independently in a distributed way.
The storage is much smaller than the wirelessly connected
and centralized managed storages of the platoon vehicles,
which is abstracted as a logically centralized caching unit.
As a result, IOH has more content duplications, less content
diversity, more frequent content removal than the platoon-
based methods. The pre-cached contents may be removed
before serving for any content requests, thereby decreasing
the content serving probability and the reliability satisfaction.

Fig. 4 shows the impact of content popularity on the reliabil-
ity satisfaction when the content serving probability of RSU
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Fig. 3. Accumulative reward (reliability satisfaction utility) with the number
of content requests.

is higher than that of platoon vehicles. The average reward
of all five methods decreases with the decreasing content
popularity. Because contents with higher popularity would be
requested more frequently than those with lower popularity,
we consider the content popularity in the reliability utility
function (i.e., Eq. 11) to improve the reliability satisfaction
of the contents with high content popularity. Meantime, for
contents with certain fixed popularity, we can have the same
conclusions with Fig.3. POH-Eval Method converges to the
PRS Method, which has the best performance due to its high
content serving probability setting, and both of them consis-
tently outperforms PRH Method. As we have analyzed before,
besides their different inherent transmission hops, PRS Method
and PVS Method’s reliability satisfactions mainly depend on
their different content serving probability. Hence, compared
with these two methods with unstable reliability satisfaction
relying on parameter setting, the POH-Eval Method always
has a competitive reliability satisfaction.

We further reveal the reason why POH-Eval Method out-
performs PRH Method in Fig.5, in which the content serving
probability of RSU is higher than that of platoon vehicles. In
both Fig.5 (a) and (b), we can see that caching contents in
RSU can obtain a higher average reward than caching them
in platoon vehicles. Consistent with this, the majority of pre-
caching decisions of POH-Eval Method is to store contents in
the RSU. On the contrary, PRH Method caches most contents
in platoon vehicles which have smaller average reward.

We also study the latency performance of RCCS in Fig.6.
Among all five methods, PRS Method has the largest latency
and PVS Method has the smallest latency. This is because
compared with PVS Method, PRS Method experiences more
transmission hops and it uses smaller bandwidth in sub-6GHz,
thereby suffering from lower content retrieval rate and large
latency. The caching decisions of POH-Eval Method converges
to the PRS Method and to be the worst ones. It is because
that on RCCS, POH-Eval Method’s optimization objective is
reliability satisfaction rather than latency satisfaction. PRH
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Fig. 4. Average reward (reliability satisfaction utility) with the content
popularity.

are combinations of caching decisions of PRS Method and
PVS Method. Hence, its latency performance is between PRS
Method and PVS Method.

B. The Latency Satisfaction of the LCCS

We evaluate the average latency with different content
popularities in Fig.7. It is shown that PRS Method has the
largest latency while PVS Method has the smallest latency.
This is because of the influences of their different transmission
hops and transmission bandwidths, as we analyzed before in
Fig.6. The POH-Eval Method’s latency approaches the PVS
Method’s and to be the best ones. We have the PRH Method
with its latency performance in the middle of the PVS Method
and PRS Method. IOH Method of Fig.7 has shorter latency
than that of Fig.6, for the reason that Fig.7 is to optimize LCCS
while Fig.6 is to optimize RCCS. The POH-Eval Method
is always better than the PRH with shorter latency. That is
because, in this LCCS, the optimization objective of POH-
Eval Method is always the latency satisfaction. In conclusion,
among all five methods, the POH-Eval Method can simulta-
neously allocate resources for independent virtual slices with
different QoS requirements according to independent policies,
thereby achieving the best slice’s performance satisfaction.

C. The Overall Satisfaction of RCCS and LCCS

Finally, we give the overall accumulative reward defined
in Eq. (17), in which the content serving probability of RSU
is higher than that of platoon vehicles. In Fig. 8, the POH-
Eval Method converges to the PRS Method after well trained.
As analyzed before, the performance of PVS Method and
PRS Method highly relies on their content serving probability
settings. However, the POH-Eval Method always has the
best satisfactions of reliability and latency, and its overall
accumulative reward also comes first among the five methods.
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Fig. 5. Caching ratio and average reward with the content popularity. (a)
POH-Eval Method; (b) PRH Method.
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VI. CONCLUSIONS

In this paper, a platoon-based edge vehicular network is
proposed to deal with the mobility challenges in mobile edge
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caching and communication. To support various vehicular
applications with different QoS requirements, we abstract
two virtual content service slices (i.e., reliability-constrained
content service slice and latency-constrained content service
slice) by the flexible programable function of network resource
management of SDN and NFV. Then, we study the edge
pre-caching optimization problem to achieve reliable and fast
content disseminations in the proposed platoon-based edge
vehicular network. Since the pre-cached contents are retrieved
via multi-hop wireless transmissions with multi-hop latency
and reliability issues, the performance of pre-caching policy
depends on the optimal matching the caching resource allo-
cation of offline pre-caching phase and the communication
resource allocation of the online content requesting phase.
Hence, we propose a DRL-based content pre-caching scheme
for the two virtual content service slices. Comparing with other
state-of-the-art algorithms, we jointly consider the unique
advantages of platooning to mitigate mobility challenges,
impacts of transmission and bandwidth of the communication
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aspect, and the impacts of content popularity and serving
probability of the caching aspect on the content pre-caching
performance, leading to stable and competitive reliability and
latency satisfaction.
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