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Abstract—Due to the flexible mobility and agility, unmanned
aerial vehicles (UAVs) are expected to be deployed as aerial
base stations (BSs) in future air-ground integrated wireless
networks, providing temporary and controllable coverage and
additional computation capabilities for ground Internet of Things
(IoT) devices with or without infrastructure support. Meanwhile,
with the breakthrough of artificial intelligence (AI), more and
more AI applications relying on AI methods such as deep
neural networks (DNNs) are expected to be applied in various
fields such as smart homes, smart factories and smart cities
to improve our lifestyles and efficiency dramatically. However,
AI applications are generally computation-intensive, latency-
sensitive, and energy-consuming, making resource-constrained
IoT devices unable to benefit from AI anytime and anywhere.
In this paper, we study mobile edge computing (MEC) for AI
applications in air-ground integrated wireless networks. Our goal
is to minimize the service latency while ensuring the learning
accuracy requirements and energy consumption. To achieve that,
we take DNN as the typical AI application and formulate an
optimization problem that optimizes the DNN model decision,
computation and communication resource allocation, and UAV
trajectory control, subject to the energy consumption, latency,
computation and communication resource constraints. Consider-
ing the formulated problem is non-convex, we decompose it into
multiple convex subproblems and then alternately solve them till
they converge to the desired solution. Simulation results show
that the proposed algorithm significantly improves the system
performance for AI applications.

Index Terms—Internet of Things, unmanned aerial vehicle
(UAV), mobile edge computing (MEC), resource allocation, tra-
jectory control.

I. INTRODUCTION

W ITH the rapid development of 5G networks, Internet-
of-Things (IoTs), and artificial intelligence (AI) tech-

nologies, a large number of AI applications relying on deep
neural networks (DNNs) have been emerging in various ap-
plication fields, ranging from manufacturing, medical service,
finance, security, entertainment, education, transportation, and
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logistics. Advanced DNN models (e.g., artificial neural net-
work (ANN), convolutional neural network (CNN), and deep
reinforcement learning (DRL)) [1] could provide better learn-
ing results so that human roles can be replaced in many key
work areas with high intensity, difficulty, and danger areas,
such as virtual reality, intelligent surveillance and autonomous
driving. Compared with normal applications, AI applications
relying on AI technologies have some new computational
characteristics and new challenges. Implementation of AI ap-
plications often involves training and inference, that is, training
the models through sample training, fitting and environment
interaction, and then using the trained models to process the
data. Parameters of AI computing are large, requiring a large
amount of computation, high storage capacity, low-latency
memory access capacity. Directly running complicated AI
models such as DNNs with high computing power require-
ments on resource-constrained IoT devices will introduce long
processing latency and high energy consumption, which will
hinder the widespread use of AI technology. Thus, efficiently
deploying AI applications with high requirements on compu-
tation and storage resources has become an urgent problem.

Today, most AI applications are deployed on the cloud to
leverage vast computational resources to execute resource-
demanding DNN models [2]–[4]. Unfortunately, cloud com-
puting has one inherent limitation, i.e., the long transmission
distance between the cloud and IoT devices, which often in-
curs unexpected latency, energy consumption, and packet loss
issues. Besides, such cloud-based method is only applicable
when network access is reliable. Thus, cloud computing is
not suitable for a wide range of emerging latency-critical
AI applications. Mobile edge computing (MEC) has been
recognized as a promising alternative to reduce execution
latency and energy consumption [5]–[8]. By deploying exten-
sive computation and storage resources to the network edge,
such as Wi-Fi access points and base stations (BSs), the
execution latency and energy consumption of AI applications
can be significantly reduced. Many current works [9]–[14]
mainly focus on developing MEC systems under the cov-
erage of terrestrial networks to improve the performance of
AI applications. However, limited by the network coverage,
terrestrial networks may fail to provide high-quality intelligent
services with relatively high computing requirements for IoT
devices anytime and anywhere. Furthermore, it is costly and
impractical to densely deploy static edge servers for ubiquitous
intelligent services in a realistic environment, such as disaster
response, emergency relief, or rural environments. To tackle
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these challenges, unmanned aerial vehicles (UAVs) assisted
MEC system has received growing popularity [15]–[20]. Due
to the mobility, flexibility, and cost-effective features, UAVs
can work as flying base stations (BSs) to provide temporary
and controllable coverage and additional communication and
computation support for ground IoT devices, especially for
wireless communication systems with limited or no available
infrastructures.

However, developing a UAV-enabled MEC system for AI
applications introduces several challenges. Firstly, the high
mobility of the UAV results in dynamic coverage and channel
conditions, leading to intermittent connections and possibly
increased communication latency. To guarantee the system
performance, the UAV’s location should be carefully de-
signed to strengthen the coverage and provide better channel
conditions for computation task offloading. Secondly, since
the UAV equipped with edge servers is relatively resource-
restrained compared to the cloud server, designing an effi-
cient resource allocation while considering the resource con-
straints and complex and dynamic network conditions becomes
critical for UAV-enabled MEC for supporting computation-
intensive, latency-sensitive, and energy-consuming AI appli-
cations. Thirdly, besides the service latency and energy con-
sumption, AI model accuracy becomes a key performance
indicator of AI applications. When multiple indicators are
involved in a service, we need to comprehensively consider
the complex interaction of multiple indicators and network
conditions. Fourthly, to further improve the model accuracy,
for an example, DNN models become deeper and require
larger-scale input data [10], [13], [21], which introduces
the long processing latency and high energy consumption.
However, it may not always be the best choice for running
the deepest DNN model, especially when accuracy, latency
and energy are important. Thus, how to choose the best one
from available DNN models deployed on the UAV to meet
the system performance requirements becomes an important
issue.

To the best of our knowledge, the UAV-enabled MEC
system for AI applications has not been well investigated.
To facilitate the development and deployment of real-time AI
applications in future air-ground integrated wireless networks,
we investigate the service latency minimization problem in an
air-ground integrated MEC network, while ensuring accuracy
requirements and energy limitations. In addition, since the
fixed-wing UAV can provide powerful transportation capabil-
ity and longer service time than the rotary-wing UAV in an
air-ground integrated MEC network, we adopt the fixed-wing
UAV in our system as an example. The main contributions of
the paper are summarized as follows:

• We consider an air-ground integrated MEC system, where
the UAV is equipped with an MEC server to provide
computation service for ground IoT devices with limited
processing capabilities and energy resources. In the air-
ground integrated MEC system, we first investigate the
service latency minimization problem to facilitate the de-
ployment and development of real-time AI applications.

• We formulate the service latency minimization problem

with learning accuracy, task processing latency and en-
ergy consumption constraints, by jointly optimizing the
DNN model decision, computation and communication
resource allocation, and trajectory planing of the UAV.
The formulated problem is non-convex mixed-integer
non-linear programming (MINLP) problem.

• To address this MINLP problem, we transform the orig-
inal problem into three more tractable subproblems, i.e.,
the DNN model decision given computation and commu-
nication resource allocation and UAV trajectory control,
the optimal allocation of computation and communication
resource according to the current model decision and
UAV trajectory, and the UAV trajectory planing according
to the current model decision and resource allocation. We
solve these problems iteratively and show that our pro-
posed UAV-enabled AI-computing system significantly
reduces the total execution latency while ensuring that
all tasks are successfully processed within the tolerable
accuracy of the system and energy consumption of IoT
devices.

• Through trajectory optimization, the UAV is closer to
its serving devices than the non-optimized trajectories
to provide better channel conditions and reduce the
transmission latency. Besides, resource allocations and
DNN model decisions are optimized according to wire-
less channel conditions and available resources on the
UAV, to minimize the service latency. Simulation results
demonstrate that the proposed algorithm can enhance the
system performance significantly, compared with other
benchmark schemes.

The rest of the paper is organized as follows. Section II
presents the system model and problem formulation. In Section
III, an efficient iterative search algorithm is proposed for
service latency minimization. Simulation results are discussed
in Section IV. Finally, the paper is concluded in Section V.

II. RELATED WORKS

A. MEC for AI Applications

To reduce the execution latency and energy consumption of
AI applications, many current works focus on deploying DNNs
and running them on the network edge nearby ground IoT
devices. In [10], an edge network orchestrator was designed
to improve the responsiveness and analytics accuracy of the
edge-based AI applications via optimally allocating the edge
computation resource. The optimal selection of a deep learning
algorithm between local computing and edge offloading was
investigated in [11]. Particularly, for each AI task, each IoT
device decides whether to process it locally or offload it to an
edge network, depending on the tradeoffs between the model
size, model accuracy, processing latency, battery level, and net-
work conditions. A novel network protocol named DARE was
designed in [12] to provide high-quality AI service with edge
computing, enabling ground IoT devices to dynamically adapt
their application configurations and computation resource allo-
cations on the edge server according to computation workloads
and wireless channel conditions. Such dynamic configuration
adaptations can significantly reduce the service latency in
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high dynamic edge environments. A novel QoS-guaranteed
orchestration scheme for energy-efficient AI applications was
proposed in [14] to minimize the intertwined costs, including
accuracy loss, latency, and energy consumption, under the
latency and accuracy constraints.

However, many previous works mainly focus on developing
MEC systems under the coverage of terrestrial networks to
improve the performance of AI applications, which makes AI
applications impossible to be available anytime and anywhere.
To provide low-latency AI service for remote IoT devices
with limited or no available infrastructure coverage, our work
investigates edge computing supported by the UAV equipped
with an MEC server. Compared with the infrastructure-based
MEC system, the UAV-enabled MEC system can facilitate the
development and deployment of real-time AI applications in
future air-ground integrated wireless networks.

B. UAV-enabled MEC

Currently, many research topics on UAV-enabled MEC sys-
tem have been extensively investigated, including computation
task offloading, latency reduction, energy efficiency. In [22],
an energy-efficient computation offloading problem with an
emphasis on physical-layer security was investigated. In [15],
the joint optimization of offloading and trajectory design was
investigated to minimize the UAV energy consumption and
task completion time, respectively. In [16], the minimization
problem of the weighted sum energy consumption of the
UAV and devices was investigated in the UAV-assisted MEC
system, where the UAV acts as an MEC server and a relay
to assist devices to compute their tasks or further relay
their tasks to the access point for computing. To achieve a
good tradeoff between computation and energy, computation
efficiency, defined as the ratio of the total computation bits
to the total energy consumption, was introduced in [17]. To
enable massive connectivity in IoT scenario, non-orthogonal-
multiple-access (NOMA)-enabled MEC in multi-cell networks
was studied in [18], in which multiple devices applied NOMA
technique to offload their computation tasks to edge networks
for high energy-efficient MEC. To mitigate sensor devices’
energy and computing shortage issues, the UAV-enabled wire-
less powered cooperative MEC system was considered in [19],
[20], where the UAV installed with an energy transmitter and
an MEC server provides both energy and computing services
for multiple devices. In [23], a multi-UAV aided MEC system
was proposed, where multiple UAVs act as MEC servers
to provide computing services for ground IoT devices with
limited local computing capabilities, and a load balancing
algorithm was introduced to balance computational loads
among UAVs. To minimize the sum energy consumption of
UEs in a hybrid mobile edge computing network where there
are ground stations, ground vehicles and UAVs, a hybrid deep
learning based online offloading algorithm was proposed by
jointly optimizing the positions of ground vehicles and UAVs,
resource allocation, and binary computation offloading and
user association while considering the dynamic environment
[24]. In [25], a UAV-enabled MEC system with stochastic
computation tasks was investigated to minimize the average

weighted energy consumption of devices and the UAV, subject
to the constraints on task offloading, resource allocation, and
UAV’s trajectory scheduling. Task offloading decision, trans-
mission bit allocation, and UAV trajectory have been jointly
optimized in [26] to reduce the overall energy consumption
in the UAV-enhanced edge system. In a multi-UAV aided
MEC system, the total power minimization problem via jointly
optimizing user association, power control, computation ca-
pacity allocation, and UAV location planning, was considered
in [27]. To improve the transmission efficiency and minimize
the response delay, a joint communication and computation
optimization model was established for a UAV-enabled MEC
network which includes a centralized MEC enabled top-UAV
and a swarm of distributed bottom-UAVs [28].

Based on the extensive overview of existing works, we find
that few efforts have been devoted to solve the service latency
minimization problem for latency-critical AI applications in
a UAV-enabled MEC system, which motivates the work in
this paper. In particular, our work clearly differs from the
aforementioned works in the following aspects: 1) Many
previous works mainly focus on developing MEC systems
in typical cellular networks to improve the performance of
AI applications, which makes AI applications impossible to
be available anytime and anywhere. AI applications often not
only focus on energy consumption and latency but also on the
model accuracy. The optimization models of previous works in
the UAV-enabled MEC system often cannot be directly applied
to AI applications with intertwined performance indicators re-
garding accuracy, latency and energy consumption. Therefore,
we investigate the service latency minimization problem in an
air-ground integrated MEC network, while ensuring accuracy
requirements and energy limitations. 2) Different from the
existing works on joint optimization of offloading decision,
resource allocation and trajectory control, we focus on joint
optimization of AI model decision, resource allocation and
trajectory control. The decision-making for AI model selection
indicates that the UAV selects the proper AI model for each
IoT device from a series of AI model candidates configured
on the UAV under different QoS constraints and network con-
ditions. However, in the existing works, the decision making
usually refers to binary or partial offloading variable, which
means that each IoT device decides to execute the task itself
or offload the task to the UAV, or each IoT device can execute
local computing and offload part of its tasks to the MEC server
on the UAV.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, an air-ground integrated wireless
network is considered, which consists of I ground IoT devices
denoted as I = {1, , 2, ..., I} and a single fixed-wing UAV
equipped with an MEC server. The UAV deploys J well-
trained DNN models J = {1, 2, ..., J} with different model
input sizes to satisfy various QoS requirements of IoT devices,
where a smaller DNN model can reduce the processing time
and energy consumption at the cost of accuracy, and a larger
AI model can increase the accuracy at the cost of longer
processing latency and higher energy consumption. The UAV
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Fig. 1. An overview of the UAV-enabled MEC architecture.

will choose the most appropriate DNN model for each IoT
device for task processing based on network conditions and
QoS requirements, such as accuracy, latency and energy con-
sumption. During an appointed flying period T , the UAV flies
from its initial positions to the appointed final positions over
ground IoT devices, and can provide powerful computation
resource for ground IoT devices. For a given period T , IoT
device i is continuously covered by the UAV and is always
associated with the UAV. For convenience, we divide the
period T into N time slots with equal length τ (τ = T/N).

An AI application can be speech synthesis, speech recog-
nition, image and video recognition, or text analysis. In this
paper, we take image recognition usually processed by DNNs
as an example for analysis. We assume that each IoT device
has an AI application to be accomplished with the help of
the edge computing in UAV. We model an image recognition
application as a chain of independent tasks, where each task
is scheduled for task processing on a slot-by-slot basis1.
Similar to many previous works [12] [29] [30], the UAV
allocates available computation resources for different IoT de-
vices by creating multiple virtual machines for independently
processing different tasks. We introduce a binary variable
aij [n] = {0, 1} to distinguish DNN model selection decisions
at time slot n. Specifically, aij [n] = 1 indicates that IoT device
i decides to select the AI model j to execute task computing
at time slot n, otherwise aij [n] = 0. At time slot n, each task
can only select one DNN model, i.e.,∑

j∈J
aij [n] = 1,∀i, n. (1)

As the decision maker, the UAV collects the task processing
requests from its associated IoT devices on the ground and de-
cides on the task processing schedule and resource allocation
according to the dynamic network environment, such as task
processing requests and available network resources. The UAV
forwards its scheduling decisions to the associated IoT devices
for execution decisions. According to scheduling decisions

1We assume that each IoT device needs to accomplish the processing of
a task in each time slot for convenience. In practice, our proposed approach
also can be adapted to the system where the number of tasks and the number
of time slots are different. When the time slot length τ is much shorter than
the processing time, the task processing procedure will go through multiple
time slots. When the time slot length τ is much longer than the processing
time, the processing of multiple tasks can be accomplished in one time slot.

and resource allocations, each IoT device will preprocess
and offload for task computing at each time slot. To reduce
the communication overhead of task offloading, each IoT
device should first preprocess the task before offloading. After
receiving the preprocessed tasks from IoT devices, the UAV
can process them in parallel. Specifically, we assume that, in
each time slot, IoT device i starts task offloading only after the
local preprocessing procedure has completed, and starts edge
computing only after the offloading procedure has finished.
Besides, we assume that the slot length τ is sufficiently small
so that resources allocated to each IoT device can only be
released at the end of each time slot. Therefore, in our work,
we ignore queue delay for the tasks. Furthermore, computation
results usually are smaller than task-input bits [31], [32].
Thus, the downloading time for computation results from the
UAV to IoT devices is practically negligible. In this paper,
the detailed procedures of each task of each IoT device at
each time slot include three phases, i.e., local preprocessing
at IoT device i, task offloading from IoT device i to the
UAV, and edge computing at the UAV, as illustrated in Fig.
2. Let T r

ij [n], T t
ij [n], and T c

ij [n] denote the duration of the
local preprocessing phase, task offloading phase and edge
computing phase, respectively. Accordingly, for task execution
of each task at time slot n, we have the following constraint
as

aij [n](T
r
ij [n] + T t

ij [n] + T c
ij [n]) ≤ τ, ∀i, j, n. (2)

Time Slot 1 Time Slot NTime Slot n

Local AI 

Preprocessing

Task

Offloading

Edge AI

Computing
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Local AI

Preprocessing

Task

Offloading

Edge AI

Computing

Task

Offloading

Edge AI

Computing

Device 1

Device i

Device I
Local AI 

Preprocessing

Fig. 2. Illustration of time sequence for local AI preprocessing, task
offloading, and edge AI computing.

A. Local Preprocessing

In this paper, we take the image recognition application
as an example. As mentioned above, each task is required
to locally preprocess before task offloading. Similar to prior
works [30], we assume that each IoT device uses the typical
bilinear interpolation method for local preprocessing, i.e., task
resizing. Let s2j (in pixels) denote the resolution of the new
task, where sj is both the weight and height of the task after
local preprocessing. Then, the total data size of the new task,
same as the input size of DNN model j, can be expressed
as σs2j , where σ is the data size for each pixel. For the
bilinear interpolation method, its computational complexity is
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proportional to the resolution of the task. Let Ci represent
the required CPU cycles per bit. Then, the computation
latency (in second) and energy consumption (in joule) of local
preprocessing at time slot n are respectively given by

T r
ij [n] =

Ciσs
2
j

fi[n]
, ∀n, i, j, (3)

Er
ij [n] = kCiσs

2
jf

2
i [n],∀n, i, j, (4)

where fi[n] denotes the local computing resource of IoT
device i, which is constrained by 0 ≤ fi[n] ≤ fmax

i , where
fmax
i is the maximum allowable computing resource of IoT

device i. k is the effective switched capacitance determined
by the corresponding device and the original task.

It is worth mentioning that although we take the image
recognition application as an example for analysis, the above-
mentioned latency and energy consumption models can also
be adapted to other AI applications where the computational
complexity is proportional to the task size and only the total
data size of task is different.

B. Task Offloading

After local preprocessing, IoT devices will offload their
unaffordable computing tasks to its associated UAV MEC
server for task computing through the wireless channel. We
assume that the UAV flies at a fixed height h above the ground.
Suppose that the entering and left positions of the UAV are
determined, whose coordinates are denoted as q0 and qF,
respectively. The UAV trajectory is discretized into N line
segments which can be represented by the (N +1) waypoints
during the flying period T . The flying trajectory of the UAV
at time slot n can be denoted as q[n] = (x[n], y[n]). Then,
the UAV’s flying speed v[n] can be calculated by

v[n] =
q[n+ 1]− q[n]

τ
, ∀n. (5)

The flying speed of the fixed-wing UAV at time slot n has
a minimum speed Vmin requirement to remain aloft, while
cannot exceed its maximum speed Vmax. Hence, we have

V 2
min ≤ ∥v[n]∥2 ≤ V 2

max, ∀n, (6)

where ∥.∥ denotes Euclidean norm.
Suppose that the position of IoT device i is known, and its

horizon coordinate is given by ui = (xi, yi). According to the
Euclidean formula, we can obtain the distance between the
UAV and IoT device i at time slot n as

di[n] =
√

h2 + ∥q[n]− ui∥2, ∀i, n. (7)

The slot length τ is sufficiently small so that di[n] is ap-
proximately unchanged, and the channel gain is approximately
unchanged within each time slot.

In the air-ground integrated wireless network, due to the
UAV’s high altitude, the line of sight (LoS) link is much more
dominant than other channel impairments, such as small-scale
or shadowing fading. Therefore, referring to the existing works
[31], we consider the wireless channel between IoT device i
and the UAV as the free-space pathloss model. Moreover, the
Doppler effect caused by the UAV mobility is considered to

be well compensated at the UAV for simplicity. At time slot
t, the LoS channel power gain from IoT device i to the UAV
can be modeled as

hi[n] = β0(di[n])
−2, ∀i, n, (8)

where β0 is the channel power gain at the reference distance
d0 = 1 m.

Consider LTE or 5G-oriented systems, orthogonal-
frequency-division-multiple-access (OFDMA) scheme is
implemented for computation offloading in each time slot, so
that interference among IoT devices can be avoided during
the offloading process. Let wi[n] denote the communication
resource allocated to IoT device i for task transmission at time
slot n, which is constrained by the available communication
resource limitation W , i.e.,∑

i∈I

wi[n] ≤ W,∀n. (9)

When offloading, the transmission rate2 between IoT device
i and the UAV can be calculated by

Ri[n] = wi[n] log2

(
1 +

hi[n]pi
wi[n]N0

)
, (10)

where N0 represents the noise power spectral density of the
UAV, and pi is the transmit power of IoT device i.

The time required to offload a task and transmission energy
consumption of IoT device i are expressed as

T t
ij [n] =

σs2j
Ri[n]

,∀n, i, j, (11)

Et
ij [n] =

σs2j
Ri[n]

pi[n], ∀n, i, j. (12)

Since the battery life of IoT device is relatively short and
the battery level of IoT device is much lower than that of the
UAV, this paper only focuses on the energy consumption of
the IoT device and does not focus on the energy consumption
of the UAV during the flying period T . Note that since
the size of computation results is much smaller than input
data size [31], [32], the energy consumption for computation
results transmitting back from the UAV to IoT device i is
neglected. The total energy consumption of IoT device i
mainly includes the preprocessing energy consumption caused
by local preprocessing and transmission energy consumption
due to task offloading. The total energy consumption of IoT
device i during the period T is constrained by∑

n∈N

∑
j∈J

aij [n](E
r
ij [n] + Et

ij [n]) ≤ Emax
i , ∀i, (13)

where Emax
i is the residual energy of each device.

2When the time slot length τ is much shorter than the processing time, the
task processing procedure may go through multiple time slots. In this case,
we can directly adjust the constant value on the right side of the inequation
(2) to the sum of multiple time slots. In particular, when the transmission
procedure goes through multiple time slots, we can use the average data rate
of multiple time slots to evaluate the data transmission latency.
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C. Edge Computing

Relatively, the UAV has limited computation resource com-
pared to the cloud. Therefore, efforts for efficient computation
resource allocation are necessary. Let fmax

e (in CPU cycle/s)
denote the total available computation resource of the UAV,
which will be allocated to all IoT devices for parallel task
computing. Denote fe

i [n] as the computation resource allo-
cated to IoT device i, which is constrained by the maximal
computation capacity of the UAV, i.e.,∑

i∈I

∑
j∈J

aij [n]f
e
i [n] ≤ fmax

e , ∀n. (14)

Define Ce as the required CPU cycles per bit at the UAV.
Then, the edge computing latency of IoT device i can be
expressed as

T c
ij [n] = aij [n]

Ceσs
2
j

fe
i [n]

,∀n, i, j. (15)

We assume that a task will not be processed until the UAV
receives its entire input data. Moreover, we neglect the latency
caused by signaling interaction between the UAV and IoT
device i for task execution. Therefore, for each task, its end-
to-end service latency mainly consists of the preprocessing
latency due to resizing the task, transmission latency due to
offloading, and computing latency due to running DNN model.
Thus, one has

Tij [n] = T r
ij [n] + T t

ij [n] + T c
ij [n], ∀n, i, j. (16)

D. Learning Accuracy

For an AI task, the learning accuracy is one of the most
critical issues that affects the quality of experience (QoE) of
IoT devices. Consider an example of an autonomous driving
vehicle. Video data sensed or collected by the vehicle are
processed in real time to detect nearby objects to avoid
crashing with other vehicles. In order to ensure that no
objects are missed in the video data, the target detection
result should be as accurate as possible. The existing accuracy
models are derived based on the performance measurements
obtained from real experiments [10], [33], which generally
increases with the input size under a fixed DNN model at the
cost of higher computation energy consumption and longer
processing time. According to the existing work [10], the
learning accuracy highly depends on the input size of DNN
model, and the accuracy function with respect to the DNN
model input size s2j (in pixels) and model selection variable
aij [n] is modeled as a monotone non-decreasing function, i.e.,
ϕ(s2j , aij [n]) = aij [n](1 − 1.578e−6.5×10−3sj ). According to
the accuracy function, selecting the larger input size usually
results in a better accuracy value.

In this paper, we take object recognition usually processed
by DNNs as an example for analysis. The learning accuracy
of each task is defined as the ratio between the number
of correctly recognized objects and that of total objects in
a frame. For convenience, we consider that the computing
result of the selected DNN model is unsatisfactory when
the accuracy function value ϕ(s2j , aij [n]) is lower than a

predefined threshold A, otherwise, it is satisfactory. Due to the
different types of services and application scenarios, multiple
DNN models with different input sizes are available on the
UAV. The model decision is undesired when a DNN model
with an unsatisfactory accuracy function value is used by IoT
device i at time slot n. To quantify the accuracy performance
level of the system within the required period T , we define
the accuracy level indicator of the system as the ratio of the
total number of the undesired model decisions to the number
of model decisions, i.e.,

χ =
π
(
ϕ(s2j , aij [n]) ≤ A

)
π
(
ϕ(s2j , aij [n])

) , (17)

where π(·) denotes the number of model decisions. For
example, there are three DNN models available on the UAV,
corresponding to each DNN model, the input sizes are set as
100 × 100, 200 × 200, and 300 × 300 pixels, respectively.
The larger the input data of the DNN model, the higher the
model accuracy [10]. According to the accuracy function ϕ,
the accuracy value of a DNN model with input size greater
than or equal to 200× 200 pixels is greater than 0.5. Suppose
that selecting a DNN model with the accuracy value below
the predefined threshold A = 0.5 is undesired. Each task
is scheduled for processing on a slot-by-slot basis, and the
number of model decisions of four IoT devices in four time
slots is 48. Suppose that the total number of the undesired
model decisions of all IoT devices is 12. The accuracy level
indicator value of the system can be computed as χ = 12

48 = 1
4 .

The accuracy performance indicator value χ reflects the
overall learning accuracy level of the system and the service
satisfaction of IoT devices. Specifically, the smaller the χ,
the higher the overall learning accuracy performance of the
system, which is due to the fact that IoT devices need to select
larger size and more satisfactory DNN models to increase the
learning accuracy at the cost of longer processing time and
higher energy consumption.

E. Problem Formulation

Based on the above analysis, we investigate the joint
optimization problem of the DNN model decision, resource
allocation, and UAV’s flying trajectory control in an air-ground
integrated wireless network. The AI-related computing task is
latency-sensitive and energy-consuming, generally requiring
high accuracy. Therefore, we focus on minimizing the total
service latency of all tasks under learning accuracy require-
ment constraints, while keeping the tolerable device energy
consumption via jointly optimizing the model decision a =
{aij [n]}, computation resource allocation f = {fi[n], fe

i [n]},
communication resource allocation w = {wi[n]}, and UAV
trajectory control q = {q[n]}. Moreover, we assume that the
channel gains between the UAV and all IoT devices are known.
This latency minimization problem can be formulated as

P : min
a,f ,t,q

∑
n∈N

∑
i∈I

∑
j∈J

aij [n]Tij [n]

s.t. aij [n] ∈ {0, 1},∀n, i, j, (18a)
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∑
j∈J

aij [n] = 1, ∀i, n, (18b)

χ ≤ χth, (18c)

V 2
min ≤ ∥v[n]∥2 ≤ V 2

max, ∀n, (18d)
q[1] = q0,q[N + 1] = qF, (18e)
0 ≤ fi[n] ≤ fmax

i , ∀n, i, (18f)∑
i∈I

∑
j∈J

aij [n]f
e
i [n] ≤ fmax

e , ∀n, (18g)∑
i∈I

wi[n] ≤ W, ∀n, (18h)∑
n∈N

∑
j∈J

aij [n](E
r
ij [n] + Et

ij [n]) ≤ Emax
i , ∀i, (18i)

aij [n](T
r
ij [n] + T t

ij [n] + T c
ij [n]) ≤ τ, ∀i, j, n. (18j)

Constraint (18a) denotes the binary model selection variables,
and constraint (18b) reflects that only DNN model can be
selected by each task. As mentioned above, the indicator value
χ reflects the overall learning accuracy level of the system
and indicates the service satisfaction of IoT devices. The
learning accuracy requirement of the system is given in (18c),
which denotes the accuracy performance indicator value of the
system is less than or equal to the predefined threshold χth to
ensure user service experience. The flying velocity constraint
of UAV is shown in (18d). The entering and left positions
of UAV during period T are given in (18e). (18f) and (18g)
respectively state the constraints of maximal computation
capacity of IoT device i and the UAV. Constraint (18h) is the
communication resource allocation limitation. Constraint (18i)
denotes that the energy constraint of IoT device i. Constraint
(18j) denotes the service latency requirements.

It can be seen that problem P is a non-convex mixed-integer
non-linear programming (MINLP) problem, which is hard to
solve directly. This is because the model decision is binary
while the communication resource allocation, computation
resource allocation and flying trajectory control of UAV are
continuous. Different variables exist non-linear coupling. Fur-
thermore, since the objective function and the constraints are
non-convex, problem P is a non-convex optimization problem.
To tackle problem P , we decompose the original problem into
different subproblems and propose an alternative optimization
algorithm to solve them iteratively.

IV. PROPOSED LATENCY MINIMIZATION ALGORITHM

In the proposed iterative optimization algorithm, the DNN
model decision, communication resource allocation, compu-
tation resource allocation and UAV’s trajectory control are
alternatively optimized. First, we optimize the DNN model
decisions by given the communication resource allocation,
computation resource allocation, and UAV’s trajectory con-
trol. Then, we optimize the communication resource and
computation resource allocation under the given DNN model
decision and UAV’s trajectory control. Finally, we optimize the
UAV’s trajectory control by given the DNN model decision,
communication resource and computation resource allocation.

A. Model Decision Optimization

It can be seen that the model decision in problem P is
an integer programming process for the given communication
resource, computation resource, and the flying trajectory of
UAV. The DNN model decision in the original problem P can
be reformulated as SP1.

SP1 : min
a

∑
n∈N

∑
i∈I

∑
j∈J

aij [n]Tij [n]

s.t. (18a) ∼ (18c), (18g), (18i), (18j). (19a)

In problem SP1, only binary variable remains, which is a
standard integer linear programming problem. Therefore, we
can utilize the existing optimization algorithms to solve this
problem, such as branch-and-bound [34] and cutting plane
methods [35].

B. Communication and Computation Resource Allocation Op-
timization

For any given DNN model decision and UAV trajectory
control, the communication resource and computation resource
allocation optimization in P can be reformulated as

SP2 : min
f ,w

∑
n∈N

∑
i∈I

∑
j∈J

aij [n]

(
Ciσs

2
j

fi[n]
+

Ceσs
2
j

fe
i [n]

+

σs2j

wi[n] log2
(
1 + hi[n]pi

wi[n]N0

))
s.t. (18f) ∼ (18j). (20a)

Lemma 1: SP2 is a convex optimization problem.
Proof : We define the function ϕ(x) = xln(1 + b

ax ), x ≥
0, a > 0, b > 0, and its first order derivative is given by

ϕ
′
(x) = ln(1 +

b

ax
)− b

b+ ax
= ln(y) +

1

y
− 1, (21)

where y = 1 + b
ax ≥ 1. By defining the function φ(y) =

ln(y)+ 1
y , we have φ

′
(y) = 1

y −
1
y2 ≥ 0, and φ(1) = 1. Thus,

we have φ(y) ≥ 1 and ϕ
′
(x) ≥ 0. Besides, the second order

derivative of ϕ(x) is given by

ϕ
′′
(x) = − b2

x(b+ ax)2
< 0, (22)

which indicates that ϕ(x) is concave with respect to x. Thus,
Ri[n] is concave with respect to wi[n] and 1

Ri[n]
is a convex

function of wi[n]. Accordingly, the objective function of SP2
is convex with respect to wi[n] and the constraints of (18j) are
convex.

In addition, in problem SP2,
Ciσs

2
j

fi[n]
and

Ceσs
2
j

fe
i [n]

are respec-
tively convex with respect to fi[n] and fe

i [n]. According to
[36], the non-negative sum of multiple convex functions is
still convex. Thus, the objective function of problem SP2 is
convex with respect to f = {fi[n], fe

i [n]} and w = {wi[n]}.
Constraint (18j) is convex with respect to fi[n]. Therefore, the
constraints of problem SP2 are convex sets. Further, problem
SP2 is a convex optimization problem, which can be solved
by utilizing typical convex optimization algorithms, such as
Lagrange duality method or interior point method [36].
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C. Trajectory Optimization

Intuitively, due to the agility and flexible mobility, the UAV
can fly over the regions closer to all ground IoT devices,
which provides better channel conditions for computation task
offloading. According to the path-loss channel model in (8),
decreasing the distance between the device and the UAV may
decrease the path-loss exponent factor, which will increase the
transmission rate. Therefore, the UAV’s trajectory needs to be
optimized accordingly to provide better channel conditions for
computation task offloading.

Under given offloading and model decision, and allocated
resources, we can optimize the trajectory control of the UAV,
for which the problem can be formulated as

SP3 : min
q

∑
n∈N

∑
i∈I

∑
j∈J

aij [n]σs
2
j

wi[n] log2
(
1 + β0pi/(wi[n]N0)

h2+∥q[n]−ui∥2

)
s.t. V 2

min ≤ ∥v[n]∥2 ≤ V 2
max, ∀n, (23a)

q[1] = q0,q[N + 1] = qF, (23b)∑
n∈N

∑
j∈J

(
Er

ij [n] +
aij [n]σs

2
jpi

wi[n] log2
(
1 + β0pi/(wi[n]N0)

h2+∥q[n]−ui∥2

))
≤ Emax

i , ∀i, (23c)

T r
ij [n] +

aij [n]σs
2
j

wi[n] log2
(
1 + β0pi/(wi[n]N0)

h2+∥q[n]−ui∥2

) + T c
ij [n]

≤ τ, ∀i, j, n. (23d)

To analyze the convexity of problem SP3, we transform the
original problem SP3 into the following equivalence problem
SP3′ on the basis of the same constraints as problem SP3.

SP3′ : max
q

∑
n∈N

∑
i∈I

∑
j∈J

log2
(
1 +

Cij [n]
h2+∥q[n]−ui∥2

)
Dij [n]

s.t. V 2
min ≤ ∥v[n]∥2 ≤ V 2

max, ∀n, (24a)
q[1] = q0,q[N + 1] = qF, (24b)∑
n∈N

∑
j∈J

pi

Dij [n] log2
(
1 +

Cij [n]
h2+∥q[n]−ui∥2

)
≤ Emax

i −
∑
n∈N

∑
j∈J

Er
ij [n],∀i, (24c)

1

Dij [n] log2
(
1 +

Cij [n]
h2+∥q[n]−ui∥2

) ≤ (τ − T r
ij − T c

ij),

∀i, j, n, (24d)

where Cij [n] =
β0pi

wi[n]N0
, Dij [n] = aij [n]

σs2j
wi[n]

.
Although other variables and the trajectory of the UAV

could be decoupled, problem SP3′ is still non-convex. The
objective function and constraints (24c) and (24d) are neither
convex or concave with respect to the UAV’s flying trajectory
q[n]. Thus, it is a challenge to solve the non-convex problem
SP3′.

To tackle the problem, we adopt the successive convex
optimization (SCA) method [17], [37] to approximate the non-
convex function to a convex function in an iterative manner,
to obtain a local optimal solution for problem SP3. Thus, we

define the following function as

Si[n] = log2

(
1 +

Cij [n]

h2 + ∥q[n]− ui∥2

)
. (25)

We can find that Si[n] is a convex function with respect to
∥q[n] − ui∥2. Thus, it can be globally lower-bounded by its
first-order Tayler expansion with ∥q[n] − ui∥2 at any point
[36]. Define Lk

i [n] = ∥qk[n]− ui∥ as the horizontal distance
between the UAV and IoT device i at the kth iteration. Given
the flying trajectory at the kth iteration, the lower bound of
Si[n] can be obtained by

Ŝi[n] = Sk
i [n] +▽Sk

i [n](∥q[n]− ui∥ − Lk
i [n]), (26)

where Sk
i [n] and ▽Sk

i [n] are the Si[n] at the kth iteration
and the first-order derivative of Sk

i [n] with respect to Lk
i [n],

which are calculated by

Sk
i [n] = log2

(
1 +

Cij [n]

h2 + (Lk
i [n])

2

)
, (27)

▽ Sk
i [n] =

−Cij [n]ln2

(h2 + (Lk
i [n])

2)(h2 + (Lk
i [n])

2 + Cij [n])
. (28)

Similarly, in constraints (24c) and (24d), we adopt the SCA
method to relax the constraints. As a result, problem SP3′

can be rewritten as the following approximate problem SP3′′

SP3′′ : max
q

∑
n∈N

∑
i∈I

∑
j∈J

Ŝi[n]

Dij [n]

s.t. V 2
min ≤ ∥v[n]∥2 ≤ V 2

max,∀n, (29a)
q[1] = q0,q[N + 1] = qF, (29b)∑
n∈N

∑
j∈J

pi[n]

Dij [n]Ŝi[n]
≤

(
Emax

i −
∑
n∈N

∑
j∈J

Er
ij [n]

)
, ∀i,

(29c)
1

Dij [n]Ŝi[n]
≤ (τ − T r

ij − T c
ij), ∀i, j, n. (29d)

Since the constraint ∥v[n]∥2 is a convex and differentiable
function with ∥v[n]∥, for any given ∥v[n]∥k at the kth
iteration, the first-order Taylor expansion can be obtained by

∥v[n]∥2 ≥ (∥v[n]∥k)2 + 2∥v[n]∥k(∥v[n]∥ − ∥v[n]∥k),∀n,
(30)

where the (∥v[n]∥k)2 +2∥v[n]∥k(∥v[n]∥−∥v[n]∥k) is affine
with respect to ∥v[n]∥. Thus, we recast problem SP3′′ as

SP3′′′ : max
q

∑
n∈N

∑
i∈I

∑
j∈J

Ŝi[n]

Dij [n]

s.t. ∥v[n]∥2 ≤ V 2
max, ∀n, (31a)

V 2
min ≤ (∥v[n]∥k)2 + 2∥v[n]∥k(∥v[n]∥ − ∥v[n]∥k), ∀n,

(31b)
q[1] = q0,q[N + 1] = qF, (31c)∑
n∈N

∑
j∈J

pi

Dij [n]Ŝi[n]
≤

(
Emax

i −
∑
n∈N

∑
j∈J

Er
ij [n]

)
, ∀i,

(31d)
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1

Dij [n]Ŝi[n]
≤ (τ − T r

ij − T c
ij), ∀i, j, n. (31e)

With convex objective function and constraints, problem
SP3′′′ is a convex optimization problem, which can be solved
by standard convex optimization techniques, such as the CVX
solver [38].

Therefore, the joint optimization of model decision, re-
source allocation and trajectory control is detailed in Algo-
rithm 1. According to Algorithm 1, the proposed iterative
optimization algorithm solves the joint optimization of model
decision, resource allocation and trajectory control of the UAV.
Algorithm 1 is comprised of three subproblems, each of them
is convex or approximate convex and they can be solved in an
alternating manner.

D. Convergence Analysis

To prove the feasibility of Algorithm 1, we discuss the
convergence of the algorithm in this subsection. It is worth
noting that, for the trajectory control sub-problem, we only
optimally solve its approximate problem. In order to show the
convergence properties of Algorithm 1, we have the following
analysis.

Define Ω(ak, fk,wk,qk) as the objective value of the
original problem P at the k-th iteration. In step 3 of Algorithm
1, since ak is suboptimal model decisions of problem SP1
with the fixed fk−1, wk−1, qk−1, we have

Ω(ak, fk−1,wk−1,qk−1) ≤ Ω(ak−1, fk−1,wk−1,qk−1).
(32)

In step 4 of Algorithm 1, for given ak and qk−1, fk and wk

are the optimal computation resource allocation and commu-
nication resource allocation of problem SP2, and we have

Ω(ak, fk,wk,qk−1) ≤ Ω(ak, fk−1,wk−1,qk−1). (33)

In step 7 of Algorithm 1, since Ŝi[n] is the lower bounded
by its the first-order Taylor expansion as shown in (26), the
objective value of convex problem SP3′′ is a lower bound
of that of problem SP3′. Define the objective function of
problem SP3′′ as Θ(ak, fk,wk,qk). Thus, for given ak, fk

and wk, we have

Θ(ak, fk,wk,qk) ≥ Θ(ak, fk,wk,qk−1). (34)

As can be seen from the above inequality, the object value of
problem SP3 is non-increasing after each iteration. Although
only an approximate optimization problem is solved for UAV’s
trajectory control, the objective value of the original problem
P is still non-increasing after each iteration. Thus, for given
ak, fk, and wk, it follows that

Ω(ak, fk,wk,qk) ≤ Ω(ak, fk,wk,qk−1). (35)

Based on the above analysis, we obtain

Ω(ak, fk,wk,qk) ≤ Ω(ak−1, fk−1,wk−1,qk−1), (36)

which indicates that the objective function of problem (18) is
non-increasing after each iteration in Algorithm 1.

Therefore, in each iteration, the objective value of problem
P is monotonically non-increasing and can converge to a local

optimal solution.

E. Computation Complexity

According to [36], the computational complexity of an
algorithm mostly depends on the number of decision variables.
In this paper, P is divided into three subproblems and its
solution is found by iteratively solving SP1, SP2 and SP3.
Thus, the computation complexity of P is equal to the total
computational complexity of SP1, SP2 and SP3′′′ multiplied
by the total number of iterations.

Algorithm 1: Joint Optimization of Model Decision,
Resource Allocation and Trajectory Control

Input: Initialized parameters: user coordinates ui, UAV’s
trajectory q0[n], communication resource w0[n] and
computation resource allocation f0[n], computation
density Ci,Ce, model size s, tolerance error ξ1 and ξ2.

Output: model decision ak,∗[n], computation resource
allocation fk,∗[n], communication resource allocation
wk,∗[n], trajectory of the UAV qk,∗[n].

1: Initialization, set iterative number k = 1;
2: repeat
3: Solve SP1 to obtain ak,∗[n] for given fk[n], wk[n],

qk[n];
4: Solve SP2 by using standard convex optimization

techniques or CVX solver to obtain fk,∗[n], wk,∗[n]
for given qk[n], ak,∗[n];

5: Initialization, set iterative number l = 1.
6: repeat
7: Solve SP3′′′ by using standard convex optimization

techniques or CVX solver to obtain qk,∗[n] for given
ak,∗[n], fk,∗[n], wk,∗[n];

8: if
∑

n∈N ∥ql,∗
i [n]− ql−1,∗

i [n]∥ ≤ ξ1 then
9: qk,∗

i [n] = ql,∗
i [n];

10: break;
11: end if
12: l = l + 1;
13: until
14: k = k + 1;
15: Calculate the objective function

f(ak,∗[n], fk,∗[n],wk,∗[n],qk,∗[n]);
16: until k ≥ K or |f(ak,∗[n], fk,∗[n],wk,∗[n],qk,∗[n])−

f(ak−1,∗[n], fk−1,∗[n],wk−1,∗[n],qk−1,∗[n])| ≤ ξ2.

SP1 is a standard integer linear programming problem,
which can be solved by the binary cut-and-branch method
[35] with the complexity of O(n1 log n1), where n1 is the
number of variables. SP1 includes (IJN) decision variables
and its computation complexity of SP1 can be denoted as
O((IJN) log(IJN)). When the interior point method [36]
is adopted to solve SP2 and SP3′′′, the computational
complexity of the optimal solution for a convex problem
is given as O(n3.5

2 log(1/ε)), where n2 is the number of
variables and ε is the given solution accuracy. SP2 includes
(2IN) decision variables and the corresponding complexity
is O((2IN)3.5 log(1/ε)). There are (2(N − 1)) decision vari-
ables in SP3′′′, and its complexity is O((2N)3.5 log(1/ε)).
Suppose that the number of iterations in the outer and inner
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loops are K and L respectively, the total computation com-
plexity for the proposed Algorithm 1 can be calculated as
O(K((IJN) log(IJN) + ((2IN)3.5 +L(2N)3.5) log(1/ε))).
It could be found that the proposed algorithm runs in a
polynomial time and is of high complexity, making its im-
plementation challenged especially when the scale of the
network is extremely large. However, this issue could be
alleviated by setting larger threshold parameters ξ1 and ξ2 to
reduce the number of iterations properly while resulting in
the computation accuracy reduction. Therefore, there exists a
trade-off between the computation efficiency and accuracy of
the proposed algorithm.

Table I
SIMULATION PARAMETERS

Sym. Parameters Value
W Communication bandwidth 20 MHz

Vmax UAV’s maximum speed 100 m/s
Vmin UAV’s minimum speed 20 m/s
β0 Channel power gain -50 dB
pi Transmit power of device i 0.3 W
N0 Noise power density -174 dBm/Hz
Ci Local computation density [1000,2000] CPU cycles/bit
Ce Edge computation density 1000 CPU cycles/bit

fmax
i Computing capacity of device i [1,2] GHz

fmax
e UAV’s Computing capacity 14 GHz

Emax
i Device residual energy 10 J
k Effective switched capability 10−28

V. SIMULATION RESULTS

We consider a UAV-enabled MEC system, where 6 IoT
devices are randomly distributed within an area of 2000 m
× 2000 m. The entering horizontal position and and the left
position of the UAV are set as [0, 0] and [2000, 2000],
respectively. The flying trajectory of the UAV is always
sampled every time slot. We assume that the UAV flies at a
fixed altitude h = 2000 m. There are 3 DNN models deployed
on the UAV, corresponding to each DNN model, the input sizes
are set as 100×100, 300×300, 600×600 pixels, respectively.
The data-size for each pixel is set as σ = 24 bits. The larger the
input data of the DNN model, the higher the model accuracy
[10]. For simplicity, in our simulation, we assume that the
model accuracy of the selected model is undesired when a
DNN model with input size less than 300 × 300 pixels is
selected. We also assume that the total number of undesired
model decisions accounts for 1/3 or 1/4 of the number of
model decisions, i.e., the learning accuracy level of the system
is set as χ = 1/4 or χ = 1/3. According to formula (17), the
smaller the χ, the higher the overall learning accuracy level
of the system and the higher user service satisfaction. The
remaining parameters are summarized in Table I.

A. Convergence

To ensure the feasibility of the proposed iterative algorithm,
we first need to verify its convergence properties. Fig. 3 shows
the convergence of the proposed algorithm under different
parameter settings. The flying period T is set as 30 s and
50 s, and the number of time periods N is set to 30 and

50 respectively, and the length of each time slot τ is 1 s.
When the flying period T is set as 30 s and the number
of time slots is 60, the length of each time slot τ is 0.5 s.
Before iteration starts, we run Algorithm 1 based on initial
communication resource and computation resource allocation
and initial trajectory. It can be observed that the objective
function values can rapidly converge to a constant less than
5 iterations (ξ1, ξ2 = 0.01) for different learning accuracy
constraints and different time slot numbers and lengths, which
shows the effectiveness of the proposed algorithm. Intuitively,
the objective function values increase as the accuracy indicator
values reduce, which is because IoT devices need to select
larger size DNN models to guarantee the learning accuracy
requirements. In our simulation, each task is scheduled for
task processing on a slot-by-slot basis. Decreasing the time
slot length τ under the given the time period T or increasing
the time period T under the given the time slot length τ can
increase the number of time slots, increasing in the objective
function values.
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Fig. 3. Convergence behavior of the proposed algorithm under different
parameter settings.

B. Trajectory Comparisons

Fig. 4 illustrates different UAV trajectories under different
schemes and time slot lengths. In the fixed straight UAV
trajectory scenario, the UAV flies straight with the constant
flying speed from the entering position to the left position with
a straight trajectory. In the fixed arc trajectory scheme, the fly
trajectory of the UAV is an arc, in which the two ends of the
arc are the entering position and the left position, respectively.
The optimized trajectory is obtained by using our proposed
Algorithm 1.

Fig. 4(a) shows two optimized trajectories at the different
flying periods with time slot length equal to 1 s. For the
optimized UAV trajectories, the UAV always flies from the
entering position with the maximum possible speed in the first
13 time slots and flies to the left position in the last 13 time
slots. After the first 13 time slots, the UAV flies close around
a specific domain with the maximum possible duration. Here,

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on February 18,2022 at 11:32:45 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3151619, IEEE Internet of
Things Journal

11

0 200 400 600 800 1000 1200 1400 1600 1800 2000

x(m)

0

200

400

600

800

1000

1200

1400

1600

1800

2000
y(

m
)

Optimized trajectory (T=30s,N=30)
Optimized trajectory (T=35s,N=35)
Fixed straight trajectory (T=30s,N=30)
Fixed circle trajectory (T=30s,N=30)
IoT Devices

(a) Different UAV trajectories with τ = T
N

= 1 s.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

x(m)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

y(
m

)

Optimized trajectory (T= 30s,N=60)

Fixed straight trajectory (T= 30s,N=60)

Fixed circle trajectory (T= 30s,N=60)

IoT Devices

(b) Different UAV trajectories with τ = T
N

= 0.5 s.

Fig. 4. Different UAV trajectories under different schemes.

we name this domain as the optimal way-point domain. It
also can be seen that the value of T significantly affects the
maximum possible duration of the UAV to fly close around the
particular domain. The larger the flying period T , the longer
time for the UAV to fly close around the specific domain.
Specifically, when T = 35 s, the UAV has 9 time slots flying
around the fixed domain.

Fig. 4(b) shows UAV trajectories with the time slot length
of 0.5 s in the same flying period. The only difference between
the two fixed trajectory scenarios in Fig. 4(a) and the two fixed
trajectory scenarios in Fig. 4(b) is the movement distance of
the UAV in each time slot. For the optimized UAV trajectory,
the UAV always flies from the entering position with the
maximum possible speed in the first 26 time slots and flies
to the left position in the last 26 time slots. After the first 26
time slots, the UAV flies close around the optimal way-point
domain with the maximum possible duration. In comparison,
when T = 30 s, the optimized trajectory in Fig. 4(b) is more
refined than that in Fig. 4(a).

C. Performance Comparisons
To give a more detailed illustration, Fig. 5 illustrates the

average service latency with and without the trajectory opti-
mization at different periods, time slot lengths and maximum
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Fig. 5. Average service latency per time slot versus different periods, time
slot lengths and maximum flying speeds. (Case1: optimized trajectory, Case2:
fixed arc trajectory, Case3: fixed straight trajectory)

UAV speeds. In contrast, the optimized UAV trajectories are
closer to all IoT devices than the non-optimized trajectories
(i.e., the fixed arc trajectory and fixed straight trajectory),
reducing the average service latency in each time slot due to
better channel quality. Besides, the average service reduces as
the maximum UAV speed increases. This is because the faster
the UAV speed, the shorter the time it takes for the UAV to
reach and leave the optimal way-point domain, and the longer
the duration for the UAV to flying around the optimal way-
point domain.

In Fig. 5, the number of time slots of T = 30 and T =
50 is set as 30 and 50, and the length of each time slot is
set as τ = 1 s, respectively. It can be seen that, the average
service latency in each time slot would reduce as the number
of time slots increases, which is due to the fact that the UAV
would have more freedom to fly closer to its serving devices
for better channel conditions. Specifically, when the period T
increases, the UAV would be located in the optimal way-point
domain with a longer duration and would service all ground
IoT devices in better channel conditions, leading to decreased
latency performance. Given the flying period T = 30 s, the
number of time slots is set to 60 and 80, and the length of
each time slot is 0.5 s and 0.375 s, respectively. It can be seen
that in the same flying period T = 30 s, the average service
decreases with the increase of the number of time slots. This
is because the UAV would fly close around the optimal way-
point domain with a more refined trajectory and would service
all ground IoT devices in better channel conditions, improving
the service latency performance.

Fig. 6 and Fig. 7 compare the total latency of different
schemes with respect to the maximal available computation
and communication resources and accuracy requirements. In
the previous works [8] [39], the equal resource allocation
policy is considered, which allocates equal communication
resource or computation resource to multiple devices. In our
simulation, we use the equal resource allocation policy as
a baseline for performance comparison. The optimal CPU
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Fig. 6. Total service latency of different schemes versus maximal available
computation resources of the UAV and accuracy requirements (T = 30 s,
N = 30).
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Fig. 7. Total service latency of different schemes versus maximal available
communication resources and accuracy requirements (T = 30 s, N = 30).

scheme indicates that communication resources allocated to
each IoT device are equal while computation resources are
allocated optimally. The optimal bandwidth scheme denotes
that computation resources allocated to each IoT device are
equal while communication bandwidth resources are allocated
optimally. Our proposed scheme uses Algorithm 1 to optimize
computation and communication resources. Compared with
the optimal CPU scheme and bandwidth scheme, the proposed
scheme has the best system performance, which shows the
efficiency of the proposed Algorithm 1 for service latency
minimization.

Intuitively, according to Fig. 6, when the maximal compu-
tation capacity of the UAV increases, IoT devices can reduce
more computing latency while guaranteeing their accuracy
constraints. From Fig. 7, it can also be observed that the
total service latency for all tasks can be further reduced if the

available bandwidth increases, which is because the increased
bandwidth for each device to achieve higher data transmission
rate according to constraint (10). According to Fig. 6 and Fig.
7, the total service latency increases as the learning accuracy
of the system, which is due to the fact that the larger models
can increase the accuracy at the cost of longer processing
latency. We can also observe that, compared with the large
accuracy indicator, the small accuracy indicator requires more
computation and communication resources to achieve the same
system performance. For example, in Fig. 7, when the service
latency is about 32 s, for the accuracy level indicator value
χ = 1/3, the maximal available communication bandwidth is
30 MHz. For the accuracy indicator χ = 1/4, the maximal
available communication bandwidth needs to be increased to
45 MHz.
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Fig. 8. Total service latency comparisons of different schemes under different
device numbers (T = 30 s, N = 30, χ = 1/4).

Finally, we compare the system performance of the pro-
posed scheme with that of the following three benchmark
schemes, i.e., 1) No Accuracy Guarantee: it aims to minimize
the total service latency of all devices while guaranteeing their
energy consumption and latency constraints, regardless of the
learning accuracy requirements; 2) Random Model Decisions:
it aims to minimize the total service latency of all devices,
regardless of the learning accuracy requirements, latency and
devices’ energy consumption constraints; 3) Greedy Accuracy:
all devices select the largest DNN model all the time to
maximize the learning accuracy of the system, while the
energy and latency constraints are ignored.

According to Fig. 8, the service latency of different schemes
increases significantly as the number of devices increases
due to serious computation and communication resource con-
tentions. Our proposed scheme always selects the larger DNN
models to ensure the accuracy performance and achieve lower
service latency. For No Accuracy Guarantee scheme, it selects
the smallest DNN model all the time to achieve the lowest ser-
vice latency while sacrificing the accuracy performance, which
provides an achievable lower bound of latency performance.
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Greedy Accuracy scheme selects the largest DNN model all
the time to achieve the highest desirable system accuracy at
a cost of long latency, which presents an achievable upper
bound of latency performance. In contrast, the service latency
of our scheme is significantly lower than that of Random
Model Decisions scheme and Greedy Accuracy scheme and
higher than that of No Accuracy Guarantee scheme.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the latency minimization prob-
lem in the air-ground integrated wireless networks by jointly
optimizing the model decision, computation and communi-
cation resource allocation, and UAV trajectory control. We
have proposed an iterative optimization algorithm to tackle the
problem and proved that the algorithm has good convergence.
Simulation results show that by optimized the model decision,
resource allocation, and UAV trajectory, the proposed algo-
rithm could provide outstanding service performance guaran-
tees under energy consumption, latency, accuracy requirement
constraints.

Our investigation also reveals that independently processing
a task with high accuracy requirements on the IoT devices
or the UAV is limited by their computing capability and
energy consumption. In the future, to further improve the
performance of the air-ground integrated MEC system, we will
focus on investigating UAV swarm collaboration, including
how to dynamically form UAV swarm to provide continuous
coverage of a given area and on-demand collaboration, and
how to reasonably split a large-scale AI model into multiple
independent model segments and then deploy them to UAV
swarm for collaborative computing.
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