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Abstract—In this paper, we study the throughput optimization
problem in energy harvesting based cognitive Internet of Things
(IoT), under cooperative spectrum sensing mode. Considering
the user diversity in energy harvesting efficiency, spectrum
sensing performance and data quality-of-service requirement, we
optimize the harvesting-sensing-transmission tradeoff. To achieve
this, we formulate it as a network-level throughput optimization
problem by jointly optimizing time splitting and sensor selection.
With the proposed throughput-based greedy algorithm, we first
fix the sensor selection variable, and then transform the problem
into an equivalent convex optimization problem. Simulation
results show that our proposed scheme has great advantages
in terms of secondary network throughput.

Index Terms—Cooperative Sensing, Cognitive IoT, Energy
Harvesting

I. INTRODUCTION

Internet of Things (IoT) is a recent technology connecting
massive devices to provide ubiquitous communication expe-
rience. The boosting growth of data traffic among connected
devices in IoT heavily relies on the radio spectrum resource.
Cognitive radio is deemed as a promising way in IoT to
accommodate the scarcity of spectrum resource, where IoT
devices perform as secondary users (SUs) to obtain more
transmission opportunity [1]–[3]. Besides, energy resource is
also important especially for outdoor IoT devices, since the
power line may not be available and frequent replacement
of batteries may introduce significant operational expenditure.
Harvesting energy from the renewable sources (e.g., wind,
solar, ambient radio power and vibration) gives a solution to
eliminate the energy issues in IoT [4].

Therefore, energy harvesting based cognitive radio network
has been widely investigated [5], [6]. Liang et al. in [7]
investigate the tradeoff issue between spectrum sensing and
data transmission in cognitive radio networks. Based on this
work, Yin et al. in [8] discuss harvesting-sensing-transmission
tradeoff under both data-fusion and decision-fusion strategies.
Bae et al. in [9] discuss the optimal sensing strategy to maxi-
mize the SU throughput under the energy causality constraint.
Li et al. in [10] study the joint optimization of sensing ener-
gy, transmission energy and sensing interval, under partially
observable Markov decision process.

However, a premise behind these existing works is non-
cooperative sensing mode, where SUs sense individually. The
sensing performance such as detection probability is often
compromised with shadowing, fading and receiver uncertainty.
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To overcome this, cooperative sensing method, combining
decisions from spatially distributed SUs, is studied to improve
sensing efficiency by exploring spatial diversity in cognitive
radio networks [11].

With cooperative sensing, the energy-harvesting based cog-
nitive radio network faces more challenges. First, under coop-
erative sensing, multiple SUs sense together to achieve a com-
bined decision. Thus, SUs with limited harvesting capability
but large transmission demands, could prevent from sensing,
and directly use the final decision resulted from other sensing
SUs. This provides more flexibility in resource allocation. It
helps such energy-constrained SUs to save sensing energy for
more transmissions, as well as helps them to gain more time
for energy harvesting. Second, the sensing strategy including
sensor selection, sensing time allocation and decision threshold
setting, directly impacts on the final sensing performance. This
further influences the throughput of both primary users (PUs)
and SUs. Besides, the time and energy resource remaining for
SU transmission is also impacted by sensing strategy. Hence,
the harvesting-sensing-transmission tradeoff problem becomes
further complicated under the cooperative spectrum sensing
mode.

To this end, in this paper we study the throughput optimiza-
tion in energy harvesting based cognitive IoT, under coopera-
tive spectrum sensing mode. Considering the user diversity of
secondary IoT device in harvesting efficiency, sensing perfor-
mance and quality-of-service (QoS) requirement, we propose
a novel resource allocation scheme to maximize the network-
level throughput in secondary IoT networks. We formulate the
network-level throughput optimization problem in secondary
IoT, by jointly optimizing time splitting and sensor selection.
Then we propose a throughput based greedy algorithm to solve
it. Simulations show that the proposed scheme outperforms
other schemes in terms of secondary network throughput. Our
main contributions are as follows:

• Based on the time splitting, PU protection, energy causal-
ity and QoS requirement constraints, we jointly formulate
the throughput optimization problem for secondary IoT
network from two aspects: 1) time splitting to determine
the time duration for energy harvesting, spectrum sensing
and transmission periods. 2) sensor selection scheme to
choose SUs to perform cooperative spectrum sensing;

• To solve it, we propose a throughput-based greedy al-
gorithm. In this algorithm, we first fix the binary sensor
selection variables. Then, based on the feature of log-
concave function, we transform the sub-problem into a
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convex optimization problem and easily solve it through
traditional optimization means;

• Simulations show that the proposed scheme has great
advantages in terms of secondary network throughput.

II. SYSTEM MODEL

We consider an energy-harvesting based cognitive IoT with
one PU transmitter, one fusion center (FC), and N SUs (We
use secondary user and secondary IoT device interchangeably
in this paper). Note that the FC also plays a role as secondary
access point (SAP) to receive data traffic from SUs. Denoting
the idle probability of PU as Pr0. Time is discretized into
frames. We assume channel fading are independent and identi-
cally distributed (i.i.d.) across frames, and independent across
different SUs. Channel gains change over time, but remain
constant within each frame. The channel gain between FC
and SUi is denoted as gi.

A. Time Splitting Structure
As illustrated in Fig. 1, frame with length T is split into

energy harvesting, spectrum sensing, and data transmission
periods. These three periods are non-overlapping due to the
energy half-duplex constraint which prevents battery from
charging and discharging simultaneously [6].
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Fig. 1. Time Splitting in a Frame

In each frame, SUs first harvest energy from ambient
within duration τH . We assume infinite battery capacity and
denote the harvesting efficiency of SUi as PHi. After energy
harvesting, SUs perform spectrum sensing within duration τS .
If SUi is selected to sense, we have δi = 1, otherwise δi = 0.
If SUi does not participate in sensing, it keeps harvesting
during sensing period. Power consumed for sensing of SUi

is denoted by PSi.
After spectrum sensing, once PU is declared to be inactive,

SUs access idle spectrum to transmit to SAP. The transmission
time allocated for SUi is τTi. To avoid collision at SAP
and mitigate harmful interference to PU, multiple SUs may
not transmit simultaneously, i.e., τTi of SUs is also non-
overlapping. The transmission power of SUi is PTi. Consider-
ing the QoS diversity of secondary applications, for SUi, we
denote its minimal achievable rate requirement as R̄i, which
should be satisfied during data transmission. Therefore, under
the normalized channel bandwidth and additive Gaussian noise
with noise power σ2

u, the transmission rate of SUi in a frame
can be caculated as

Ri(τTi) =
τTi

T
log(1 +

|gi|2PTi

σ2
u

), (1)

B. Cooperative Spectrum Sensing

The energy detection method is adopted to spectrum sensing
in this paper, since no prior information of detected signal
is required. We consider complex PSK modulated signal and
circularly symmetric complex Gaussian noise for primary
signal. For the cooperative sensing case, we utilize the widely
used OR-rule at FC. That is, PU is claimed to be busy when
at least one sensing SU claims the presence of PU. Hence,
from [7], to measure the sensing performance, the overall false
alarm probability Prf and detection probability Prd under
cooperative sensing mode can be expressed as

Prf = 1−
N∏
i=1

(1− δiPrfi). (2)

Prd = 1−
N∏
i=1

(1− δiPrdi). (3)

where Prfi and Prdi are the individual false alarm probability
and individual detection probability of SUi, respectively.

Generally specking, to protect PUs from collision, the over-
all detection probability Prd is always required to be larger
than a given threshold Prd. Once δi is fixed (i.e., the sensor
selection scheme is fixed), based on (3), the given threshold
Prd could further derive a threshold Prdi for individual
SU by assuming that Prdi is the same for all SUs (i.e.,
Prd1 = . . . = Prdi = . . . = PrdN ).

Moreover, given Prdi, the false alarm probability of SUi

could be calculated as [7]

Prfi(τS) = Q(
√

2γi + 1Q−1(Prdi) +
√

τSfγi), (4)

where γi is the received signal-to-noise ratio (SNR) of primary
signal detected by SUi. f is the sampling frequency. Q(·)
refers to the complementary cumulative distribution function
of a standard Gaussian probability density.

III. PROBLEM FORMULATION

A. Time Splitting Constraint

Based on the analysis above, the energy harvesting,
spectrum sensing and data transmission periods are non-
overlapping. Hence, their summation should be less than the
frame length. That is,

τH + τS +

N∑
i=1

τTi ≤ T. (5)

B. Energy Causality Constraint

For each SUi, the total energy harvested during a frame is
τHPHi + τSPHi(1 − δi), which means the energy harvested
during the harvesting period τH , and during the sensing period
τS if the SU does not join in spectrum sensing.

The energy consumed during a frame is τTiPTi + τSPSiδi,
which means the energy consumed for data transmission, and
for sensing if the SU performs spectrum sensing.
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Obviously, the consumed energy should be no larger than
the energy stored. Thus we have the following energy causality
constraint as

τTiPTi + τSPSiδi ≤ Ei + τHPHi + τSPHi(1− δi), (6)

where Ei is the residual energy in battery at the beginning
of each frame. Since Ei is a constant and will not affects the
solution, we assume Ei = 0 in this paper.

C. PU Protection Constraint

To protect PUs from interference, the overall detection
probability under cooperative sensing should be larger than
a given threshold Prd, that is,

1−
N∏
i=1

(1− δiPrdi) ≥ Prd. (7)

D. QoS Requirement Constraint

Based on equations (1), for each SUi, the achievable
transmission rate with transmission duration τTi is Pr0(1 −
Prf (τS))Ri(τTi).

To guarantee QoS requirement for each SU, the achievable
rate should be no less than its individual rate requirement R̄i,
i.e.,

Pr0(1− Prf (τS))Ri(τTi) ≥ R̄i, (8)

where Prf (τS) can be calculated based on (2) and (4).

E. Network-Level Throughput Maximization

The objective function is to maximize the overall throughput
of secondary IoT. Thus, we have

max
τH ,τS ,τTi,δi

Pr0(1− Prf (τS))
N∑
i=1

Ri(τTi). (9)

F. Overall Optimization Problem

Based on the analysis above, to maximize the summation
throughput in cognitive IoT, we jointly formulate the energy
harvesting, spectrum sensing and data transmission problem
with cooperative sensing mode as follows

max
τH ,τS ,τTi,δi

Pr0(1− Prf (τS))

N∑
i=1

Ri(τTi) (10)

s. t. τH + τS +
N∑
i=1

τTi ≤ T, (11)

τTiPTi + τSPSiδi ≤ τHPHi + τSPHi(1− δi), ∀i, (12)

1−
N∏
i=1

(1− δiPrdi) ≥ Prd (13)

Pr0(1− Prf (τS))Ri(τTi) ≥ R̄i, ∀i, (14)
δi ∈ {0, 1}, ∀i. (15)

IV. THROUGHPUT BASED GREEDY ALGORITHM

Because binary variables δi are involved, it is obvious that
the problem in (10)-(15) is a mixed-integer and nonlinear
optimization problem, which is difficult to solve through
existing standard optimization methods.

To this end, in this section, we propose a throughput-based
greedy algorithm to sub-optimally solve this problem. Here is
the basic idea behind this algorithm: We first fix the binary
variables δi under a sensor selection scheme. Then, for the
sub-problem with continuous variables, since it is still non-
convex, we transform it into an equivalent convex optimization
problem through mathematical transformation methods. In this
way, we could use traditional optimization algorithms to easily
solve this convex problem.

A. Sub-problem Transformation

Under a specific sensor selection scheme, the integer values
of δi could be determined. Then, in constraint (7), the indi-
vidual detection probability threshold Prdi can be calculated
through a given Prd and constraint (7) can be satisfied. But
for the remaining sub-problem with continuous variables τH ,
τS and τTi, it is still non-convex since the presence of Q(·)
function.

To overcome it, we introduce auxiliary variables αi =√
2γi + 1Q−1(Prdi) and β =

√
τS . Then equation (4) can

be rewritten as

Prfi(β) = Q(αi + β
√
fγi), (16)

Note that αi, γi, and f are constants. β is a variable.
Consequently, we have

1−Prfi(β) = 1−Q(αi+β
√

fγi) = Φ(αi+β
√

fγi), (17)

where Φ(·) refers to the cumulative distribution function of
a standard Gaussian probability density. It is proved that the
function Φ(·) is log-concave [12], meaning that log

(
Φ(·)) is

concave.
As a result, Φ(αi + β

√
fγi) is log-concave in terms of

variable β. It can be further proved that the product of log-
concave functions is also log-concave. Inspired by this feature,
for the cooperative false alarm probability Prf (β) in (2), we
can infer that

1− Prf (β) =
∏

i∈sense set

Φ(αi + β
√
fγi), (18)

is also log-concave, where the cooperative sensing set is
given by fixing δi under a sensor selection scheme. Besides,
also from [12], the logarithmic transformation of a concave
function is still concave.

On the basis of above analysis, the objective function in (10)
can be transformed as follows with the logarithmic function.

log
(
Pr0

)
+log

( ∏
i∈sense set

Φ(αi+β
√
fγi)

)
+log

( N∑
i=1

Ri(τTi)
)
.

(19)
For equation (19), the first term is a constant. The second term
is concave in terms of β. The last term is concave in terms of
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τTi. This is because
∑N

i=1 Ri(τTi) is linear and concave, and
hence its logarithmic transformation is also concave.

Therefore, the optimization problem in (10)-(15) can be
transformed as

max
τH ,β,τTi

{
log

(
Pr0

)
+

log

( ∏
i∈sense set

Φ(αi + β
√
fγi)

)
+ log

( N∑
i=1

Ri(τTi)
)}

(20)
s. t.

τH + β2 +
N∑
i=1

τTi ≤ T, (21)

τTiPTi + (T − τH −
N∑
j=1

τTj)PSi ≤ τHPHi, ∀i ∈ sense set,

(22)

τTiPTi ≤ τHPHi + (T − τH −
N∑
j=1

τTj)PHi, ∀i /∈ sense set,

(23)

log
(
Pr0

)
+ log(1− Prf (β)) + log

(
Ri(τTi)

) ≥ log(R̄i), ∀i.
(24)

It can be seen that the transformed problem (20)-(24)
is a convex optimization problem, and thus can be solved
through traditional methods like interior-point method with
polynomial-time complexity.

B. Sensor Selection Scheme

We design sensor selection scheme in this section. In order
to achieve better sensing performance, an intuitive way is to
select sensing SUs with higher received SNR of primary sig-
nal. However, considering the harvesting-sensing-transmission
tradeoff in the network, we propose a throughput-based greedy
algorithm for sensor selection.

In this algorithm, for each SUk, we first postulate that the
SU performs sensing individually under the non-cooperative
sensing mode, i.e., {δi=k = 1, δi�=k = 0}. By substituting the
value of δi in problem (10)-(15), and transforming it into the
equivalent convex problem, we can solve the corresponding
problem (20)-(23) when SUk senses individually. The corre-
sponding optimal throughput result is denoted as Throughputk.
Now we have N optimal throughput results for N SUs. We
rank SUs in descending order of Throughputk. Then we choose
SU with higher Throughputk to join in cooperative sensing set
and update the corresponding δi. Under cooperative sensing,
we solve the corresponding problem (20)-(24) with updated
δi. We record the optimal throughput for each cooperative
sensing combination, so forth until the throughput becomes
decreasing.

Note that when solving the problem (20)-(23) under non-
cooperative sensing mode, we relax the problem by omitting
the QoS requirement constraint (24). The purpose is to unfas-
ten the feasible region to get more feasible SUs.

It is thus clear that the proposed algorithm chooses sens-
ing SU according to its throughput performance. While the
throughput is obtained under the optimization problem, where
energy harvesting, spectrum sensing, and data transmission are
jointly involved. Apparently, the proposed algorithm select-
s sensors through balancing harvesting-sensing-transmission
tradeoff, rather than solely considering the sensing perfor-
mance. Overall, we detail the throughput-based greedy algo-
rithm in Algorithm 1.

Algorithm 1: Throughput-based Greedy Algorithm
Output: Cooperative Sensing Set.

1 Each SUk performs sensing independently with
non-cooperative sensing mode, i.e., δk = 1 and δi�=k = 0;

2 Solve problem (20)-(23) by substituting the value of δi.
The optimal throughput result is denoted as Throughputk
for each SUk;

3 Rank SUs in descending order of Throughputk ;
4 Add the SU with largest Throughputk into cooperative

sensing set and update δi;
5 Solve problem (20)-(24) with updated δi under

cooperative-sensing mode;
6 Calculate and record the optimal throughput results, so

forth until the throughput performance decreases.

V. PERFORMANCE EVALUATION

We generate a random cognitive IoT network where one PU,
one FC and several SUs are randomly located within an area of
1000m×1000m. To obtain the received SNR of primary signal
γi for each SU, channel gain is modeled with large-scale path
loss and small-scale fading, where large-scale path is com-
posed by path loss and shadow fading. The transmission power
of PU is 0.05W . The noise power is 2×10−12W . Harvesting
efficiency PHi and rate requirement R̄i are randomly selected
from [0, 0.2W ] and [0, 10kbps], respectively. Besides, we set
frame length T = 1000ms, sampling frequency f = 1MHz,
and sensing power PSi = 0.005W for all SUs. The overall
detection probability threshold is Prd = 0.9.

Under this topology, we compare the throughput perfor-
mance under three schemes: the proposed throughput-based
greedy (Throughput-Greedy), SNR-based greedy and non-
cooperative sensing algorithms. Here the SNR-based greedy
algorithm selects multiple SUs to join in sensing set in de-
scending order of γi. The Non-Cooperation algorithm chooses
the SU with the highest γi to perform spectrum sensing
individually.

We exam the throughput performance versus the idle prob-
ability of PUs in Fig. 2 under 6 and 10 SUs scenarios. The
transmission power of SU is 0.03W . It can be seen that as
the idle probability increases, more transmission opportunities
obtained for SUs, resulting in the ascending throughput under
all the three schemes. The proposed Throughput-Greedy al-
gorithm always outperforms other two algorithms in terms of
network-level throughput. Besides, the throughput under 10
SUs scenario is larger. This is because more SUs provides
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more transmission requirements as well as more sensing
opportunities to improve spectrum sensing performance.

In Fig. 3, we set the number of SU is 6 and the idle proba-
bility of PU is 0.8. We plot the summation throughput of SUs
versus the transmission power of SUs. Under three schemes,
with the increasing transmission power, the secondary network
throughput increases sharply and then becomes steady. The
first increasing trend is quite intuitive due to the Shannon’s
law. After that, the increasing transmission power consumes
more transmission energy and thus requires more energy
harvesting time. This in return compresses the time duration
for transmission. Thus, the increasing transmission power
combined with reducing transmission time leads to a steady
throughput change.

This inference also be demonstrated in Fig. 4, which shows
the time splitting results for a specific sensing SU under the
proposed Throughput-Greedy scheme. It reveals that with the
increasing transmission power, the SU spends more time for
harvesting and thus remains less time for data transmission.
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VI. CONCLUSIONS

In this paper, we have studied the network-level throughput
optimization problem in energy harvesting based cognitive
IoT. The harvesting-sensing-transmission tradeoff is investi-
gated under cooperative sensing mode. Time splitting and
sensor selection are jointly optimized with the constraints of
PU protection, energy causality and QoS requirement. With the
proposed throughput-based greedy algorithm, we fix the sensor
selection variable first. Then transform the problem into an
equivalent convex optimization problem. Through simulations
we show that compared with other schemes, the proposed
scheme achieves higher secondary network throughput.
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