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A B S T R A C T

The diverse computational tasks generated from advanced applications are becoming more difficult to process
by mobile user equipments due to their limited computing capability and battery supply. With the fast
development of wireless technology and infrastructure, edge computing is becoming a paradigm to alleviate
these problems by offloading the computation tasks to the edge nodes with more computation resources.
In addition, the integrated sensing and communication is a promising technology, where the wireless
communication and radar sensing share unified hardware platform and radio resources. In this paper, the
capabilities of communication, radar sensing and edge computing are integrated together in the proposed
base station architecture to support the comprehensive services of data transmission, target sensing, and edge
computing. Based on the proposed scheme, a resource allocation and time partitioning problem is investigated
to jointly optimize time partitioning, computation task processing mode selection, spectrum resource allocation
and target sensing location selection to maximize the weighted sum of task processing and communication
performance while guaranteeing the radar sensing performance. Since the problem is non-convex, we decouple
the primal problem into three subproblems which are solved separately. Simulation results show that our
proposed scheme outperforms the typical relevant schemes and can converge within an acceptable iterations.
. Introduction

For the future wireless network, in order to achieve better end-to-
nd performance, it needs not only the help of radar sensing technique
o achieve real-time environmental awareness, but also the aid of high
peed of transmission to offload sensory data to edge nodes to make
fficient processing, decision and control. Specifically, in the scenario
f vehicular network, the vehicle-to-everything communication will be
sed to offload sensory data among neighboring vehicles and road side
nits (RSUs), and the edge computing will be used to achieve low
rocessing latency and energy consumption, eventually providing safe
nd efficient autonomous driving and promoting road traffic congestion
ontrol [1,2]. Moreover, with the advantages of flexibility deployment,
nmanned aerial vehicle can be applied to carry out sensing missions in
omplicated environment such as the disaster and sparsely populated
reas, where sensory data should be offloaded and computed in a low
ost but highly-efficient way [3]. Thus, it is of great significance to in-
estigate the integrated functionalities of radar sensing, task computing
nd data transmission to meet the needs of all walks of life.
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nder Grant U1834210, Sichuan Provincial Applied Basic Research Project, China under Grant 2020YJ0218, and Fundamental Research Funds for the Central
niversities, China under Grant 2682021CF019.
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1.1. Backgrounds

1.1.1. Edge computing network
With the unprecedented proliferation of diverse applications (e.g.,

face recognition, virtual reality, augmented reality, etc.), user equip-
ment (UE) cannot effectively handle the computation tasks generated
by these applications due to the limited battery lifetime and processing
capability, which often results in high processing latency and battery
consumption [4]. By leveraging remote computing resources, cloud
computing technology can alleviate the above problem to some extent
by offloading the tasks of UEs to the remote cloud [5]. Although the
cloud can help UEs process computation tasks, it inevitably incurs extra
transmission time, consumes backhaul resources and UE transmission
power because of the long distance between the UE and cloud, which
is not always conducive to the computation task processing. Recently,
mobile edge computing (MEC) technology emerges as a promising
solution to alleviate the above difficulties. The edge computing network
shifts some computation capabilities from the cloud to the edge which
is in close proximity to UEs, herein not only reducing task processing
ttps://doi.org/10.1016/j.comcom.2022.07.030
eceived 14 February 2022; Received in revised form 16 June 2022; Accepted 20 J
vailable online 26 July 2022
140-3664/© 2022 Elsevier B.V. All rights reserved.
uly 2022

https://doi.org/10.1016/j.comcom.2022.07.030
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2022.07.030&domain=pdf
mailto:kaijuncheng@my.swjtu.edu.cn
mailto:xmfang@swjtu.edu.cn
mailto:xianbin.wang@uwo.ca
https://doi.org/10.1016/j.comcom.2022.07.030


K. Cheng, X. Fang and X. Wang Computer Communications 194 (2022) 240–249
latency and transmission energy consumption, but also saving backhaul
bandwidths [6]. Meanwhile, with the help of the advanced wireless
communication technologies, the edge offloading procedure is accel-
erated greatly. Therefore, edge computing networks can take both
advantages of the short distance with UEs and the full utilization of
edge computing resources.

1.1.2. Integrated sensing and communication network
Disregard the dramatic evolution in the last few decades, wireless

networks have been mainly used for data transmission, and never been
involved in the perception of the surrounding environment. For the
future wireless communication network architecture particularly be-
yond fifth-generation (B5G) and sixth-generation (6G), both academia
and industry are advocating utilizing sensing technology to create a
mutually shared communication system with the surrounding environ-
ment [7]. The arrival of integrated sensing and communication systems
will bring future wireless devices new capabilities of active detection
and enhancing location-based services, e.g., indoor positioning, gesture
recognition and autonomous driving [8,9]. It establishes sensing links
with the environment to perceive necessary information, laying a solid
foundation for the subsequent data transmission, analysis and process.
This novel enabling method makes everything be connected to achieve
collaborative awareness.

Towards this end, integrated sensing and communication technol-
ogy becomes the basis of realizing efficient coexistence of wireless
communication and sensing [10]. It provides various advantages over
conventional wireless networks with communication functionality only
or with coexisting radar and communication that are separately de-
signed. Firstly, wireless communication and sensing resources can be
flexibly reused, so that the sensing functionalities can be superimposed
on the communication directly as needed to reduce the deployment
cost of individual sensing [7]. In this way, the utilization efficiency
of both radio resources and the hardware can be greatly improved.
Secondly, both massive multiple-input-multiple-output (MIMO) tech-
nology and millimeter-wave (mmWave) communication, which are
critical to achieve ultra-high transmission in B5G and 6G, are very
helpful to achieve accurate radar sensing (also called target sensing
interchangeably) [11]. Thirdly, with the advanced wireless commu-
nication, radar sensing can achieve higher resolution, which in turn
assisting different critical operations in wireless communication, such
as beam training and beam tracking in vehicular networks [7]. There-
fore, the integrated sensing and communication technology makes the
sensing and communication highly coexisted, leading to significant
improvement in both performances.

1.2. Related works

1.2.1. Edge computing system
There have been many works related to the edge computing sys-

tem [12–25]. We classify them into three categories according to the
objective function. First, some works aimed to minimizing the processing
latency of tasks [12–16]. Liu et al. in [12] investigated an MEC sys-
tem that allows parallel computation task execution and proposed a
stochastic computation task scheduling policy. The works in [13,14]
both investigated the task offloading problem in vehicular network.
The former considered a multi-vehicle service migration problem and
proposed an online algorithm to minimize the long-term service la-
tency, where the constraints of quality of experience and the mobility
of serving vehicles are taken into account. The latter considered a
problem involving the computation load balance of RSUs and proposed
a novel model of task scheduling where the state of the RSUs may
dynamically switch between sleep and work. Li et al. in [15] proposed
a proactive indexed-based scheduling scheme based on the vehicle mo-
bility and computing capability of the edge server to process real-time
computing tasks offloaded by autonomous vehicles. Second, literatures
like [17–21] were designed to minimize the energy consumption of the
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devices. Hou et al. in [17] proposed a fog computing aided swarm
of drones architecture to enhance the capability of drones swarm
handling the computation-intensive tasks. Meanwhile, they formulated
an energy consumption minimization problem jointly considering the
latency, reliability. Chen et al. in [18] optimized offloading decisions
and small base station associations jointly to minimize the total en-
ergy consumption of all mobile devices. In literature [19], authors
incorporated mmWave to boost offloading rate, and optimized the
user association, sub-channel allocation and computation offloading
decision to minimize the total energy consumption of all users within
the required latency. Tan et al. in [20] focused on the joint problem
of task offloading and resource allocation in the orthogonal frequency-
division multiple access based multi-user collaborative MEC network
where task offloading decision, collaboration decision, subcarrier and
power allocation, and computing resource allocation are optimized
through a two-level alternation method framework. Third, different
from the above works minimizing task processing latency or energy
consumption of the devices separately, [22–25] put the two indicators
into a single utility function to minimize the cost of latency and energy
consumption, which can adaptively adjust the corresponding weighting
factor. Chen et al. in [22] investigated a relay assisted computation
offloading problem to support computation offloading as well as the
transfer of locally computed results. In order to fully utilize the benefits
of fog computing, Luo et al. in [23] proposed an incentive mechanism
to stimulate resource sharing among devices by leveraging coalitional
game theory and they derived an efficient scheme to obtain the core so-
lution. Lei et al. in [24] utilized deep reinforcement learning method to
solve a joint computation offloading and multi-user scheduling problem
under stochastic traffic arrival.

1.2.2. Radar sensing integrated communication system
Due to recent advances in wireless communication system and the

demands of sensing capability, the radar sensing integrated communi-
cation technology becomes a rapidly growing research field. Relying
on the MIMO communication, MIMO radar was proposed to improve
the deployment flexibility and radar sensing performance [26]. One
researching direction is to investigate the waveforms of MIMO radar
[27,28]. Liu et al. in [27] studied the waveform design problem for
colocated MIMO radar, and proposed a waveform design criterion
for omnidirectional beampattern to suppress both auto-correlation and
cross-correlation sidelobes of angular waveforms. Sun et al. in [28]
evaluated the performance of some typical realistic MIMO radar wave-
forms instead of the ideal orthogonal MIMO waveform. Another re-
searching direction is focused on optimizing the communication beam-
former of MIMO radar [29,30]. Liu et al. in [29] considered two
options where the first one splits the radar and communication antenna
separately while the second one shares all the antennas to form a joint
waveform to transmit both radar and communication signals. Then,
they optimized the beampattern while guaranteeing the performance
of the downlink communications. Liu et al. in [30] proposed a joint
beamforming approach for MIMO radar and multiuser MIMO commu-
nication sharing spectrum and transmit array where a problem was
formulated to optimize the performance of MIMO radar transmit beam-
forming while meeting communication constraints. [1,31,32] focused
on optimizing the upper layer resource allocation of the communication
and radar (CommRadar) system. Zhang et al. in [1] investigated how
to balance the volume of shared messages and constrained resources
in fog-based vehicular networks. They formulated an optimization
problem to maximize the sum satisfaction of cooperative perception,
while satisfying the maximum latency and sojourn time constraints of
vehicles. Ju et al. in [31] considered a linear frequency modulated
pulse radar and optimized CommRadar mode selection, radar steering
direction, communication user scheduling, and time allocation between
communication and radar detection to achieve adaptive communica-
tion and radar detection scheduling. Wang et al. in [32] exploited
non-orthogonal multiple access (NOMA) technology where the super-
imposed NOMA signal is simultaneously exploited for target sensing.
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Besides, a beamforming design problem was formulated to maximize
the weighted sum of the communication throughput and the effective
sensing power.

1.3. Motivations

1.3.1. Integrated communication, sensing, and edge computing network
Based on our analysis, we find that the current researches lack the

integration of radar sensing technology in the edge computing related
works. The radar sensing function in the edge computing network
not only facilitates the target exploration and perception (i.e., feature
extract and information excavated), but also helps the base station (BS)
collect sensory data for further data analysis and processing. At this
point, it is of great importance and worthiness to introduce the radar
sensing capability in the existing edge computing network where BS
completes all the tasks of data transmission, radar sensing and edge
computing. Thus, the communication, sensing and computation are
jointly investigated in this integrated network. After introducing radar
sensing functionality, one of the most significant challenges lies in how
to manage the orchestration of each traffic, e.g., task offloading, uplink
(UL) communication, downlink (DL) communication and radar sensing
in the current scheduling period (SP).

Therefore, this paper provides an illuminating insight into the in-
tegrated communication, sensing, and edge computing network, and
intends to make some preliminary discussions on how the different pa-
rameters influence the overall system performance in such a symbiotic
system.

1.3.2. Resource allocation and time partitioning scheme
Firstly, in this integrated network, the time-division-multiplexing

manner is adopted for the scheduling of different kinds of traffic
(i.e., task offloading, UL and DL communication, and radar sensing)
under the given duration of SP to control the mutual interference. Since
one’s performance improvement may degrade the other’s, the corre-
sponding time partitioning should be optimized in order to achieve
maximal weighted utility in terms of computation task processing
latency, UL and DL transmission rate. Secondly, how to allocate the
constrained spectrum resources to the task offloading links and com-
munication links should be tackled with the purpose of improving
offloading and transmission rate. Thirdly, owing to that the compu-
tation tasks need to be processed, the task processing mode should
be carefully selected to reduce the processing latency. Lastly, how to
select the target sensing locations (TSLs) should be optimized in order
to guarantee the target sensing performance.

Therefore, in our proposed integrated communication, sensing, and
edge computing network, the time partitioning, spectrum resource
allocation, computation task processing mode selection and TSL se-
lection are jointly investigated to achieve maximal weighted sum of
task processing and communication performance while guaranteeing
the performance of radar sensing.

1.4. Our contributions

1. We introduce a kind of integrated communication, sensing, and
edge computing network, where the data transmission, target
sensing and edge computing services are incorporated and con-
trolled with the shared spectrum in BS.

2. In this integrated network, we propose a time partitioning
scheme where the task offloading, UL and DL communica-
tion, and target sensing services are conducted to fulfill the
task processing, communication and radar sensing requirements.
Based on this, we formulate an optimization problem to maxi-
mize the weighted sum of task processing and communication
performance while guaranteeing the radar sensing performance.
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Fig. 1. Model of integrated communication, sensing, and edge computing network.

Fig. 2. Illustration of resource allocation and time partitioning scheme in integrated
communication, sensing, and edge computing network. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

3. In order to solve this non-convex problem, we decompose the
original problem into three subproblems, namely spectrum re-
source allocation, time partitioning and TSLs selection, and task
processing mode selection. We firstly leverage Lagrange duality
property and bisection method to solve spectrum resource al-
location. Then, we propose a heuristic algorithm to solve time
partitioning and TSLs selection. Lastly, we present a coordi-
nate descent (CD) based method to solve task processing mode
selection.

4. We prove the convergence of the proposed algorithm and dis-
cuss the influence of different parameters on the total utility
value. And we also validate the superiority over the comparison
schemes.

The remainder of this paper is organized as follows. In Section 2,
we give the system model of the integrated network and the illustration
of the corresponding resource allocation and time partitioning (RATP)
scheme. In Section 3, we give the mathematical models for the task pro-
cessing, UL and DL communication and radar sensing, and formulate a
resource allocation and time partitioning problem. A CD method-based
iterative algorithm is designed to solve the above problem in Section 4.
Then, we conduct some numerical simulations in Section 5. Lastly, we
give the conclusion and present some future work in Section 6.

2. System model and scheme illustration

Fig. 1 shows the model of integrated communication, sensing, and
edge computing network, which includes a BS, 𝐼 communication UEs
(CM-UEs), 𝐽 TSLs and 𝐾 computation UEs (CP-UEs). BS can conduct se-
ries of communication, target sensing and edge computing operations.
In order to reduce the hardware complexity, instead of the full-duplex
hardware architecture, we assume that BS performs these services by
the time sharing and time duplex communication mechanism for all
services to avoid mutual interference to each other. In addition, we
assume in this paper that at most one CM-UE or CP-UE or TSL could
be served at a time. Without loss of generality, the length of SP is
denoted by 𝑇 during which the BS is responsible for four main missions:
computation task processing, UL communication, DL communication
and target sensing. And the RATP scheme is shown in Fig. 2.
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Table 1
System parameters.

Definitions Notations

Number of CM-UEs, TSLs and CP-UEs 𝐼 , 𝐽 , 𝐾

Set of CM-UEs, TSLs and CP-UEs ,  , 

Length of SP 𝑇

Task size and intensity 𝑙𝑘, 𝑐𝑘

Task processing mode and TSL selection indicators 𝜌𝑘, 𝑏𝑗

CPU frequency of CP-UE and BS 𝑓𝑘, 𝑓𝑏

Allocated spectrum for offloading and communication 𝛾𝑜𝑘 , 𝛾𝑢𝑖 , 𝛾𝑑𝑖

Transmitting power of CP-UE, CM-UE and BS 𝑝𝑡𝑘, 𝑝𝑡𝑖, 𝑝𝑡𝑏
Channel power gain between UEs and BS ℎ𝑘_𝑏, ℎ𝑖_𝑏

Noise power spectral density 𝑁0

Latency of local computing, offloading and BS computing 𝑡𝑐𝑘_𝑙 , 𝑡
𝑜
𝑘_𝑏, 𝑡

𝑐
𝑘_𝑏

Latency of local processing mode and edge processing mode 𝑡𝑘_𝑙 , 𝑡𝑘_𝑏

Set of tasks computed locally or by BS 𝐾0, 𝐾1

Offloading rate, UL and DL data rate 𝑟𝑜𝑘, 𝑟𝑢𝑖 , 𝑟𝑑𝑖

Processing latency, UL and DL transmission rate 𝐷𝑐𝑝
𝑘 , 𝑅𝑢𝑙

𝑖 , 𝑅𝑑𝑙
𝑖

Allocated time for communication and BS sensing 𝜏𝑢𝑖 , 𝜏𝑑𝑖 , 𝜏𝑠𝑗

Coherence processing time 𝑡𝑐𝑗

Normalized processing latency, UL and DL transmission rate 𝐷𝑐𝑝,𝑛
𝑘 , 𝑅𝑢𝑙,𝑛

𝑖 , 𝑅𝑑𝑙,𝑛
𝑖

Weighting factors for task processing and communication 𝜂𝑐𝑝, 𝜂𝑢𝑙 , 𝜂𝑑𝑙

1. Computation Task Offloading (the red arrow in Fig. 2): Due to the
limitation of local computation capabilities of CP-UEs, if they
cannot perform the task processing locally, they can offload the
tasks to BS for edge computing with the allocated spectrum
resources.

2. UL Communication (the blue arrow in Fig. 2): The CM-UEs transmit
UL data sequentially to BS with the allocated time and spectrum
resources.

3. DL Communication (the yellow arrow in Fig. 2): The BS trans-
mits DL data sequentially to CM-UEs according to the time
partitioning and spectrum allocation decisions.

4. Target Sensing (the green arrow in Fig. 2): BS performs target
sensing towards TSLs according to the time partitioning and TSL
selection results.

. Mathematical models and problem formulation

In this section, we firstly give the resource allocation models of
ach traffic, namely computation task processing, UL and DL com-
unication, and target sensing. Then, we formulate the problem as
aximizing the weighted sum of task processing and communication
erformance while guaranteeing the radar sensing performance under
he time partitioning, spectrum resources budget, task processing mode
election and radar sensing related constraints. The notations are listed
n Table 1 for clarity.

.1. Resource allocation model

.1.1. Computation task processing
We characterize an application-generated computation task of CP-

E with two key parameters
{

𝑙𝑘, 𝑐𝑘
}

, where 𝑙𝑘 is the size of computation
ask (in bits), 𝑐𝑘 (in cycles/bit) is the number of computation cycles
eeded to process one bit of the task. Then, we use a binary variable
𝑘 ∈ {0, 1} to decide whether the task of CP-UE 𝑘 is computed locally
r offloaded to BS for edge computing. Namely, if the task of CP-UE 𝑘
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is computed locally, 𝜌𝑘 = 0, otherwise 𝜌𝑘 = 1. Thus, if the task of CP-UE
𝑘 is computed locally, the local computing time is

𝑡𝑐𝑘_𝑙 =
𝑙𝑘𝑐𝑘
𝑓𝑘

,∀𝑘 ∈ 𝐾0 (1)

where 𝑓𝑘 (in CPU cycles/s) is the local CPU frequency of CP-UE 𝑘 and
𝐾0 indicates the set of tasks computed locally. In the local processing
mode, the whole latency 𝑡𝑘_𝑙 is equal to its local computing time
(i.e., 𝑡𝑘_𝑙 = 𝑡𝑐𝑘_𝑙).

If the computation task of CP-UE 𝑘 is offloaded to BS for edge
computing, the offloading rate (in bits/s) can be given by

𝑟𝑜𝑘_𝑏 = 𝛾𝑜𝑘 log2

(

1 +
𝑝𝑡𝑘ℎ𝑘_𝑏

𝛾𝑜𝑘𝑁0

)

,∀𝑘 ∈ 𝐾1 (2)

where 𝛾𝑜𝑘 is the allocated spectrum resources for offloading, 𝑝𝑡𝑘 is the
transmitting power of CP-UE 𝑘, ℎ𝑘_𝑏 is its channel power gain, 𝑁0 is
the noise power spectral density and 𝐾1 is the set of tasks offloaded to
BS for edge computing.

Then, the offloading latency of CP-UE 𝑘 can be given by

𝑡𝑜𝑘_𝑏 =
𝑙𝑘
𝑟𝑜𝑘_𝑏

,∀𝑘 ∈ 𝐾1 (3)

In addition, the time for BS computing the offloaded task from
CP-UE 𝑘 is

𝑡𝑐𝑘_𝑏 =
𝑙𝑘𝑐𝑘
𝑓𝑏

,∀𝑘 ∈ 𝐾1 (4)

where 𝑓𝑏 is the CPU frequency of BS.
Thus, the whole latency if the task of CP-UE 𝑘 is offloaded to BS

for edge computing is the summation of its offloading latency and BS
computing latency which is expressed as

𝑡𝑘_𝑏 = 𝑡𝑜𝑘_𝑏 + 𝑡𝑐𝑘_𝑏,∀𝑘 ∈ 𝐾1 (5)

Finally, the processing latency of CP-UE 𝑘 is

𝐷𝑐𝑝
𝑘 = (1 − 𝜌𝑘)𝑡𝑘_𝑙 + 𝜌𝑘𝑡𝑘_𝑏,∀𝑘 ∈ 𝐾 (6)

Since that the computation result is rather small compared with the
task, the time for transmitting computation results back to CP-UEs can
be ignored.

3.1.2. UL communication
As for UL communication, the UL data rate of CM-UE 𝑖 is

𝑟𝑢𝑖 = 𝛾𝑢𝑖 log2

(

1 +
𝑝𝑡𝑖ℎ𝑖_𝑏
𝛾𝑢𝑖 𝑁0

)

,∀𝑖 ∈ 𝐼 (7)

where 𝛾𝑢𝑖 is the allocated spectrum resources on its UL transmission link,
𝑝𝑡𝑖 is the transmitting power of CM-UE 𝑖, ℎ𝑖_𝑏 is its channel power gain.

Thus, the UL transmission rate of CM-UE 𝑖 within SP is

𝑅𝑢𝑙
𝑖 =

𝑟𝑢𝑖 𝜏
𝑢
𝑖

𝑇
,∀𝑖 ∈ 𝐼 (8)

where 𝜏𝑢𝑖 is the allocated time for CM-UE 𝑖 UL communication.

.1.3. DL communication
As for DL communication, the DL data rate of CM-UE 𝑖 is

𝑑
𝑖 = 𝛾𝑑𝑖 log2

(

1 +
𝑝𝑡𝑏ℎ𝑏_𝑖
𝛾𝑑𝑖 𝑁0

)

,∀𝑖 ∈ 𝐼 (9)

where 𝛾𝑑𝑖 is the allocated spectrum resources on its DL transmission
link, 𝑝𝑡𝑏 is the transmitting power of BS. We assume that the UL and DL
links are reciprocal, thus ℎ𝑏_𝑖 = ℎ𝑖_𝑏.

Thus, the DL transmission rate of CM-UE 𝑖 within SP is

𝑅𝑑𝑙
𝑖 =

𝑟𝑑𝑖 𝜏
𝑑
𝑖

𝑇
,∀𝑖 ∈ 𝐼 (10)

where 𝜏𝑑 is the allocated time for CM-UE 𝑖 DL communication.
𝑖
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Fig. 3. Model of radar sensing.

.1.4. Target sensing
Due to its simplicity and low-cost receiver, frequency modulated

ontinuous wave (FMCW) is a commonly used radar waveform [33,34].
or an FMCW radar model shown in Fig. 3, its radar sensing perfor-
ance (i.e., the false alarm and detection probability performance)

an be determined by the signal-to-noise ratio (SNR) of the received
cho [35]. We assume the radar waveform consists of 𝑀 chirp signals,
𝑝, 𝐵𝑠 and 𝑆 are the duration, sweeping bandwidth and slope of the
ignal, respectively. The coherent processing time of the radar sensing
s denoted as 𝑡𝑐 = 𝑀𝑡𝑝, 𝜎𝑗 is the radar cross section (RCS) of the TSL 𝑗.

Herein, the echo SNR from TSL 𝑗 can be written as [35]

𝑁𝑅𝑒𝑐ℎ𝑜
𝑗 =

𝜎𝑗𝑝𝑡𝑏𝐺
𝑡𝐺𝑟𝜆2𝑡𝑐𝑗

(4𝜋)3(𝑑𝑏_𝑗 )4𝑁0𝐵𝑠
,∀𝑗 ∈ 𝐽 (11)

here 𝐺𝑡 and 𝐺𝑟 are the BS transmitting and receiving antenna gain, 𝜆
s its modulated signal wavelength, 𝑑𝑏_𝑗 is the distance between BS and

TSL 𝑗.
Given the false alarm and detection probability, we can obtain the

echo SNR requirement for TSL 𝑗 as 𝑆𝑁𝑅𝑒𝑐ℎ𝑜
𝑗_𝑟𝑒𝑞 . For the maximum range

detection requirement 𝑑𝑚𝑎𝑥, the minimum RCS requirement 𝜎𝑚𝑖𝑛 and
cho SNR requirement 𝑆𝑁𝑅𝑒𝑐ℎ𝑜

𝑗_𝑟𝑒𝑞 , we can derive

𝑡𝑐𝑗 ≥
𝑆𝑁𝑅𝑒𝑐ℎ𝑜

𝑗_𝑟𝑒𝑞(4𝜋)
3(𝑑𝑚𝑎𝑥)4𝑁0𝐵𝑠

𝜎𝑚𝑖𝑛𝑝𝑡𝑏𝐺
𝑡𝐺𝑟𝜆2

(12)

Thus, the coherent processing time should satisfy

𝑡𝑐𝑗 = max

{

𝑀𝑡𝑝,
𝑆𝑁𝑅𝑒𝑐ℎ𝑜

𝑗_𝑟𝑒𝑞(4𝜋)
3(𝑑𝑚𝑎𝑥)4𝑁0𝐵𝑠

𝜎𝑚𝑖𝑛𝑝𝑡𝑏𝐺
𝑡𝐺𝑟𝜆2

}

(13)

In order to guarantee the radar sensing performance in terms of
ange resolution and velocity resolution, as well as false alarm and
etection probability, the allocated time for BS sensing the selected TSL
should satisfy
𝑠
𝑗 ≥ 𝑏𝑗 𝑡

𝑐
𝑗 ,∀𝑗 ∈ 𝐽 (14)

here 𝜏𝑠𝑗 is the allocated time for BS performing target sensing towards
SL 𝑗, 𝑏𝑗 ∈ {0, 1} is the selection indicator of TSL 𝑗. Specifically, if TSL
is selected for radar sensing, 𝑏𝑗 = 1, otherwise 𝑏𝑗 = 0.

.2. Optimization problem formulation

In order to depict the comprehensive performance, we integrate
he processing latency of CP-UEs, UL and DL transmission rate of CM-
Es into a utility function. Since these metrics have different levels of
alues, we need to conduct normalization operations firstly. Thus, the
ormalized processing latency of CP-UE 𝑘, the normalized UL and DL
ransmission rate of CM-UE 𝑖 are

𝑐𝑝,𝑛
𝑘 =

⎧

⎪

⎨

⎪

⎩

0 𝐷𝑐𝑝
𝑘 ≥ 𝐷𝑐𝑝,𝑚𝑎𝑥

𝑘
𝐷𝑐𝑝,𝑚𝑎𝑥
𝑘 −𝐷𝑐𝑝

𝑘
𝐷𝑐𝑝,𝑚𝑎𝑥
𝑘 −𝐷𝑐𝑝,𝑚𝑖𝑛

𝑘
𝐷𝑐𝑝,𝑚𝑖𝑛

𝑘 < 𝐷𝑐𝑝
𝑘 < 𝐷𝑐𝑝,𝑚𝑎𝑥

𝑘

1 𝐷𝑐𝑝
𝑘 ≤ 𝐷𝑐𝑝,𝑚𝑖𝑛

𝑘

𝑅𝑢𝑙,𝑛
𝑖 =

⎧

⎪

⎨

⎪

0 𝑅𝑢𝑙
𝑖 ≤ 𝑅𝑢𝑙,𝑡ℎ

𝑖
𝑅𝑢𝑙
𝑖 −𝑅𝑢𝑙,𝑡ℎ

𝑖
𝑅𝑢𝑙,𝑚𝑎𝑥−𝑅𝑢𝑙,𝑡ℎ

𝑖
𝑅𝑢𝑙,𝑡ℎ
𝑖 < 𝑅𝑢𝑙

𝑖 < 𝑅𝑢𝑙,𝑚𝑎𝑥

𝑢𝑙 𝑢𝑙,𝑚𝑎𝑥

⎩ 1 𝑅𝑖 ≥ 𝑅 p
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𝑑𝑙,𝑛
𝑖 =

⎧

⎪

⎨

⎪

⎩

0 𝑅𝑑𝑙
𝑖 ≤ 𝑅𝑑𝑙,𝑡ℎ

𝑖
𝑅𝑑𝑙
𝑖 −𝑅𝑑𝑙,𝑡ℎ

𝑖
𝑅𝑑𝑙,𝑚𝑎𝑥−𝑅𝑑𝑙,𝑡ℎ

𝑖
𝑅𝑑𝑙,𝑡ℎ
𝑖 < 𝑅𝑑𝑙

𝑖 < 𝑅𝑑𝑙,𝑚𝑎𝑥

1 𝑅𝑑𝑙
𝑖 ≥ 𝑅𝑑𝑙,𝑚𝑎𝑥

where
{

𝐷𝑐𝑝,𝑚𝑎𝑥
𝑘 , 𝐷𝑐𝑝,𝑚𝑖𝑛

𝑘

}

,
{

𝑅𝑢𝑙,𝑚𝑎𝑥, 𝑅𝑢𝑙,𝑡ℎ
𝑖

}

and
{

𝑅𝑑𝑙,𝑚𝑎𝑥, 𝑅𝑑𝑙,𝑡ℎ
𝑖

}

are the
processing latency requirement range for CP-UE 𝑘 and the UL and DL
transmission rate requirement ranges for CM-UE 𝑖.

Then, we use a weighted utility function considering the above task
processing and communication performances, where this method has
been already used in many works such as [25,36].

𝑈 = 𝜂𝑐𝑝
∑

𝑘∈𝐾
𝐷𝑐𝑝,𝑛

𝑘 + 𝜂𝑢𝑙
∑

𝑖∈𝐼
𝑅𝑢𝑙,𝑛
𝑖 + 𝜂𝑑𝑙

∑

𝑖∈𝐼
𝑅𝑑𝑙,𝑛
𝑖 (15)

where 𝜂𝑐𝑝 ≥ 0, 𝜂𝑢𝑙 ≥ 0 and 𝜂𝑑𝑙 ≥ 0 are the corresponding weighting
actors. The higher weighting factor means the higher requirement on
his service, which also indicates the performance tradeoff among these
hree services.

In the integrated communication, sensing, and edge computing
etwork, how to partition the time for different kinds of traffic, and
llocate the constrained spectrum resources, as well as optimizing the
ask processing mode selection and TSL selection to achieve the maxi-
um weighted sum of task processing and communication performance
hile guaranteeing the radar sensing performance needs to be solved.
hus, the resource allocation and time partitioning problem can be
ormulated as follows
𝑃 1) ∶ max

𝝆,𝜸,𝒃,𝝉
𝑈

s.t. C1: 𝑏𝑗 ∈ {0, 1},∀𝑗 ∈ 𝐽

C2:
∑

𝑗∈𝐽
𝑏𝑗 ≥ 𝑏𝑟𝑒𝑞

C3: 𝜏𝑠𝑗 ≥ 𝑏𝑗 𝑡
𝑐
𝑗 ,∀𝑗 ∈ 𝐽

C4: 𝜌𝑘 ∈ {0, 1},∀𝑘 ∈ 𝐾

C5: 𝛾𝑜𝑘 , 𝛾
𝑢
𝑖 , 𝛾

𝑑
𝑖 ≥ 0,∀𝑘 ∈ 𝐾1,∀𝑖 ∈ 𝐼

C6:
∑

𝑘∈𝐾
𝜌𝑘𝛾

𝑜
𝑘 +

∑

𝑖∈𝐼

(

𝛾𝑢𝑖 + 𝛾𝑑𝑖
)

≤ 𝐵𝑊

C7: 𝜏𝑢𝑖 , 𝜏
𝑑
𝑖 ≥ 𝜏𝑚𝑖𝑛,∀𝑖 ∈ 𝐼

C8:
∑

𝑘∈𝐾
𝜌𝑘𝑡

𝑜
𝑘_𝑏 +

∑

𝑗∈𝐽
𝑏𝑗𝜏

𝑠
𝑗 +

∑

𝑖∈𝐼

(

𝜏𝑢𝑖 + 𝜏𝑑𝑖
)

≤ 𝑇

(16)

where 𝝆 ≜ {𝜌𝑘}𝑘∈, 𝜸 ≜ {𝛾𝑜𝑘 , 𝛾
𝑢
𝑖 , 𝛾

𝑑
𝑖 }𝑘∈,𝑖∈ , 𝒃 ≜ {𝑏𝑗}𝑗∈ and

𝝉 ≜ {𝜏𝑢𝑖 , 𝜏
𝑑
𝑖 , 𝜏

𝑠
𝑗 }𝑖∈,𝑗∈ . C1 is the constraint for TSL selection. C2

ndicates the number of TSLs selected in this radar sensing mission
hould be greater than the requirement 𝑏𝑟𝑒𝑞 . C3 guarantees the radar
ensing performance for the selected TSL 𝑗. C4 is the constraint for
he computation task processing mode selection. C5 and C6 are the
pectrum resource limitations and 𝐵𝑊 is the total available spectrum
esources. C7 and C8 are the constraints for time partitioning where
𝑚𝑖𝑛 is the minimal required time for UL and DL communication.

. Algorithm design for proposed scheme

Problem (P1) is non-convex due to the combinatorial binary vari-
bles and the multiplicative terms in the objective function and con-
traints C3, C6 and C8. Herein, it is difficult to find its globally optimal
olution [32]. In order to solve it, an iterative algorithm is used to
btain a suboptimal solution with low complexity, which is a common
ethodology to handle the non-convex problem [1,25]. Specifically,
e decompose (P1) into three subproblems. Firstly, spectrum resource
llocation will be obtained under the given task processing mode selec-
ion, time partitioning and TSL selection. Secondly, with the obtained
pectrum resource allocation and the given task processing mode selec-
ion, the problem of time partitioning and TSL selection will be solved.
hirdly, the problem of task processing mode selection will be solved
ith the obtained spectrum resource allocation, time partitioning and
SL selection. All the variables will tend to be stable with the iterations
oing on, and they can be approximated as the solutions of the original

roblem [37].
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4.1. Optimization of spectrum resource allocation

The spectrum resource allocation with the purpose of optimizing
the spectrum resources for computation task offloading, UL and DL
communication under the given task processing mode selection, time
partitioning and TSL selection can be written as

(𝑃 2) ∶max
𝜸

𝜂𝑐𝑝
∑

𝑘∈𝐾1

𝐷𝑐𝑝,𝑛
𝑘 + 𝜂𝑢𝑙

∑

𝑖∈𝐼
𝑅𝑢𝑙,𝑛
𝑖 + 𝜂𝑑𝑙

∑

𝑖∈𝐼
𝑅𝑑𝑙,𝑛
𝑖

s.t. C1: 𝛾𝑜𝑘 , 𝛾
𝑢
𝑖 , 𝛾

𝑑
𝑖 ≥ 0,∀𝑘 ∈ 𝐾1,∀𝑖 ∈ 𝐼

C2:
∑

𝑘∈𝐾1

𝛾𝑜𝑘 +
∑

𝑖∈𝐼

(

𝛾𝑢𝑖 + 𝛾𝑑𝑖
)

≤ 𝐵𝑊

(17)

The first and second order derivatives of 𝐷𝑐𝑝,𝑛
𝑘 w.r.t offloading rate

𝑟𝑜𝑘_𝑏 are

𝜕𝐷𝑐𝑝,𝑛
𝑘

𝜕𝑟𝑜𝑘_𝑏
=

𝑙𝑘
(

𝐷𝑐𝑝,𝑚𝑎𝑥
𝑘 −𝐷𝑐𝑝,𝑚𝑖𝑛

𝑘

)(

𝑟𝑜𝑘_𝑏

)2
≥ 0,∀𝑘 ∈ 𝐾1 (18)

𝜕2𝐷𝑐𝑝,𝑛
𝑘

𝜕
(

𝑟𝑜𝑘_𝑏

)2
=

−2𝑙𝑘
(

𝐷𝑐𝑝,𝑚𝑎𝑥
𝑘 −𝐷𝑐𝑝,𝑚𝑖𝑛

𝑘

)(

𝑟𝑜𝑘_𝑏

)3
≤ 0,∀𝑘 ∈ 𝐾1 (19)

Thus, 𝐷𝑐𝑝,𝑛
𝑘 is monotonically increasing and concave w.r.t 𝑟𝑜𝑘_𝑏. In

addition, the second order derivative of 𝑟𝑜𝑘_𝑏 w.r.t 𝛾𝑜𝑘 is

𝜕2𝑟𝑜𝑘_𝑏

𝜕
(

𝛾𝑜𝑘
)2

=
−
(

𝑝𝑡𝑘ℎ𝑘_𝑏
)2

ln 2𝛾𝑜𝑘
(

𝛾𝑜𝑘𝑁0 + 𝑝𝑡𝑘ℎ𝑘_𝑏
)2

≤ 0,∀𝑘 ∈ 𝐾1 (20)

Obviously, 𝑟𝑜𝑘_𝑏 is concave w.r.t 𝛾𝑜𝑘. In addition, 𝜕2𝐷𝑐𝑝,𝑛
𝑘

𝜕𝛾𝑜𝑘𝜕𝛾
𝑜
𝑘′

= 0, 𝑘 ≠ 𝑘′.
Thus, the Hessian matrix of 𝑫𝒄𝒑,𝒏 w.r.t 𝜸𝒐 is negative definite and is a
concave function.

The second order derivative of 𝑅𝑢𝑙,𝑛
𝑖 w.r.t 𝛾𝑢𝑖 is

𝜕2𝑅𝑢𝑙,𝑛
𝑖

𝜕
(

𝛾𝑢𝑖
)2

=
−𝜏𝑢𝑖

(

𝑝𝑡𝑖ℎ𝑖_𝑏
)2

𝑇 ln 2
(

𝑅𝑢𝑙,𝑚𝑎𝑥 − 𝑅𝑢𝑙,𝑡ℎ
𝑖

)

𝛾𝑢𝑖
(

𝛾𝑢𝑖 𝑁0 + 𝑝𝑡𝑖ℎ𝑖_𝑏
)2

(21)

It is apparent that 𝜕2𝑅𝑢𝑙,𝑛
𝑖

𝜕
(

𝛾𝑢𝑖
)2 ≤0, which means 𝑅𝑢𝑙,𝑛

𝑖 is concave and the

essian matrix of 𝑹𝒖𝒍,𝒏 w.r.t 𝜸𝒖 is negative definite. Thus, it is also a
concave function.

Due to the paper limits, we omit the provement that 𝑹𝒅𝒍,𝒏 w.r.t 𝜸𝒅
is also a concave function which is same with 𝑹𝒖𝒍,𝒏.

Because of the summation of concave functions is still concave [38],
(P2) is a convex optimization problem with linear constraints. We
leverage Lagrange duality method to solve this convex optimization
problem, based on which the closed-form of the optimal solutions
for the spectrum resource allocation can be obtained. The partial
Lagrangian function of (P2) is defined as

(𝜸, 𝑣) =𝜂𝑐𝑝
∑

𝑘∈𝐾1

𝐷𝑐𝑝,𝑛
𝑘 + 𝜂𝑢𝑙

∑

𝑖∈𝐼
𝑅𝑢𝑙,𝑛
𝑖 + 𝜂𝑑𝑙

∑

𝑖∈𝐼
𝑅𝑑𝑙,𝑛
𝑖

+ 𝑣

(

𝐵𝑊 −
∑

𝑘∈𝐾1

𝛾𝑜𝑘 −
∑

𝑖∈𝐼

(

𝛾𝑢𝑖 + 𝛾𝑑𝑖
)

) (22)

where 𝑣 is a non-negative Lagrangian multiplier to constrain C2 of (P2).
The Lagrangian dual function can be presented as

𝑑(𝑣) = max
𝜸

{

(𝜸, 𝑣)|𝛾𝑜𝑘 , 𝛾
𝑢
𝑖 , 𝛾

𝑑
𝑖 ≥ 0,∀𝑘 ∈ 𝐾1,∀𝑖 ∈ 𝐼

}

(23)

The corresponding dual problem is

min
𝑣

{𝑑(𝑣)|𝑣 ≥ 0} (24)

Due to that (P2) is a convex problem which satisfies Slater’s condi-
tion, the dual problem has the same optimal objective value with the
primal problem according to the strong duality [38]. Thus, by solving
its dual problem in Eq. (24), we can get the solution of (P2).

In the following, we obtain the optimal spectrum resource allo-
cation 𝜸𝒐, 𝜸𝒖 and 𝜸𝒅 for given Lagrangian multiplier 𝑣 at first, then
the Lagrangian multiplier is obtained via Karush–Kuhn–Tucker (KKT)

principle and bisection method.
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4.1.1. Update spectrum resource allocation
The first order derivative of (𝜸, 𝑣) w.r.t 𝛾𝑢𝑖 is

𝜕(𝜸, 𝑣)
𝜕𝛾𝑢𝑖

=
𝜂𝑢𝑙𝜏𝑢𝑖

(

log2

(

1 +
𝑝𝑡𝑖ℎ𝑖_𝑏
𝛾𝑢𝑖 𝑁0

)

−
𝑝𝑡𝑖ℎ𝑖_𝑏

ln 2
(

𝛾𝑢𝑖 𝑁0+𝑝𝑡𝑖ℎ𝑖_𝑏
)

)

𝑇
(

𝑅𝑢𝑙,𝑚𝑎𝑥 − 𝑅𝑢𝑙,𝑡ℎ
𝑖

) − 𝑣 (25)

By letting 1+
𝑝𝑡𝑖ℎ𝑖_𝑏
𝛾𝑢𝑖 𝑁0

= 𝜁𝑢𝑖 and setting 𝜕(𝜸,𝑣)
𝜕𝛾𝑢𝑖

= 0 at the optimal point,
we have

ln 𝜁𝑢𝑖 + 1
𝜁𝑢𝑖

= 1 +

(

𝑅𝑢𝑙,𝑚𝑎𝑥 − 𝑅𝑢𝑙,𝑡ℎ
𝑖

)

𝑣𝑇 ln 2

𝜂𝑢𝑙𝜏𝑢𝑖
(26)

By taking natural exponential operations at both sides of Eq. (26)

nd letting 1 +

(

𝑅𝑢𝑙,𝑚𝑎𝑥−𝑅𝑢𝑙,𝑡ℎ
𝑖

)

𝑣𝑇 ln 2

𝜂𝑢𝑙𝜏𝑢𝑖
= 𝜙𝑢

𝑖 , we have

𝜁𝑢𝑖 𝑒𝑥𝑝
(

1
𝜁𝑢𝑖

)

= 𝑒𝑥𝑝
(

𝜙𝑢
𝑖
)

(27)

According to the definition and property of Lambert-W function, we
have

1
𝜁𝑢𝑖

= −𝑊

(

− 1
𝑒𝑥𝑝

(

𝜙𝑢
𝑖
)

)

(28)

Thus, the closed-form solution of 𝛾𝑢𝑖 is

𝛾𝑢𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑡𝑖ℎ𝑖_𝑏
𝑁0

⎛

⎜

⎜

⎜

⎜

⎝

1

−𝑊
(

− 1
𝑒𝑥𝑝

(

𝜙𝑢𝑖
)

) − 1

⎞

⎟

⎟

⎟

⎟

⎠

−1
⎤

⎥

⎥

⎥

⎥

⎦

+

0

(29)

Similarly, the closed-form solutions of 𝛾𝑑𝑖 and 𝛾𝑜𝑘 can be derived as

𝛾𝑑𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑡𝑏ℎ𝑏_𝑖
𝑁0

⎛

⎜

⎜

⎜

⎜

⎝

1

−𝑊
(

− 1
𝑒𝑥𝑝

(

𝜙𝑑𝑖
)

) − 1

⎞

⎟

⎟

⎟

⎟

⎠

−1
⎤

⎥

⎥

⎥

⎥

⎦

+

0

(30)

𝛾𝑜𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑝𝑡𝑘ℎ𝑘_𝑏

𝑁0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

−𝑊

(

− 1
𝑒𝑥𝑝

(

𝜙𝑜𝑘
)

) − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1
⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

0

(31)

here 𝜙𝑑
𝑖 = 1 +

(

𝑅𝑑𝑙,𝑚𝑎𝑥−𝑅𝑑𝑙,𝑡ℎ
𝑖

)

𝑣𝑇 ln 2

𝜂𝑑𝑙𝜏𝑑𝑖
, 𝜙𝑜

𝑘 = 1 + 𝜂𝑐𝑝𝑣𝑙𝑘 ln 2
(

𝐷𝑐𝑝,𝑚𝑎𝑥
𝑘 −𝐷𝑐𝑝,𝑚𝑖𝑛

𝑘

) .

4.1.2. Update Lagrangian multiplier
With the achieved spectrum resource allocation 𝜸, we start to update

the Lagrangian multiplier 𝑣. According to the KKT condition, we have

𝑣

(

𝐵𝑊 −
∑

𝑘∈𝐾1

𝛾𝑜𝑘 −
∑

𝑖∈𝐼

(

𝛾𝑢𝑖 + 𝛾𝑑𝑖
)

)

= 0 (32)

Since 𝑣 is a non-negative and when 𝑣 → 0, 𝛾𝑜𝑘 → ∞, 𝛾𝑢𝑖 → ∞, 𝛾𝑑𝑖 → ∞
according to Eq. (29), Eqs. (30) and (31). Thus, we can conclude that
𝑣 ≠ 0 in Eq. (32). In order to achieve Eq. (32), we can find that
∑

𝑘∈𝐾1

𝛾𝑜𝑘 +
∑

𝑖∈𝐼

(

𝛾𝑢𝑖 + 𝛾𝑑𝑖
)

= 𝐵𝑊 (33)

Lemma 1. The left hand of Eq. (33) is a monotonically decreasing function
w.r.t 𝑣, and it has one unique solution 𝑣∗ that satisfies Eq. (33).

Proof. The proof is provided in Appendix A. ■

With Lemma 1, the optimal 𝑣∗ can be efficiently obtained by bi-
section method which satisfies Eq. (33), and then the optimal 𝜸∗ can
be derived from Eq. (29), Eqs. (30) and (31). The specific spectrum
resource allocation solution for (P2) is shown in Algorithm 1.
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Algorithm 1 Spectrum Resource Allocation Solution for (P2)
Require: Given time partitioning 𝝉, task processing mode selection 𝝆,

accuracy indicator 𝛿, initial upper bound 𝑣𝑢𝑏 and lower bound 𝑣𝑙𝑏

1: Repeat
2: Let 𝑣 = 𝑣𝑢𝑏+𝑣𝑙𝑏

2
3: Calculate the left hand of Eq. (33) as 𝛾𝑡𝑜𝑡𝑎𝑙
4: If 𝛾𝑡𝑜𝑡𝑎𝑙 ≥ 𝐵𝑊
5: Let 𝑣𝑙𝑏 = 𝑣
6: Else
7: Let 𝑣𝑢𝑏 = 𝑣
8: EndIf
9: Until |

|

𝑣𝑢𝑏 − 𝑣𝑙𝑏|
|

≤ 𝛿
0: Obtain optimal spectrum resource allocation by Eq. (29), Eq. (30),

Eq. (31)

4.2. Optimization of time partitioning and target sensing location selection

Another subproblem, namely time partitioning and TSL selection
is considered to optimize time partitioning for UL and DL communi-
cation and target sensing as well as the selection of TSLs with the
obtained spectrum resource allocation and the given task processing
mode selection, which can be given by

(𝑃 3) ∶max
𝝉

𝜂𝑐𝑝
∑

𝑘∈𝐾
𝐷𝑐𝑝,𝑛

𝑘 + 𝜂𝑢𝑙
∑

𝑖∈𝐼
𝑅𝑢𝑙,𝑛
𝑖 + 𝜂𝑑𝑙

∑

𝑖∈𝐼
𝑅𝑑𝑙,𝑛
𝑖

s.t. C1:
∑

𝑗∈𝐽
𝑏𝑗 ≥ 𝑏𝑟𝑒𝑞

C2: 𝜏𝑠𝑗 ≥ 𝑏𝑗 𝑡
𝑐
𝑗 ,∀𝑗 ∈ 𝐽

C3: 𝜏𝑢𝑖 , 𝜏
𝑑
𝑖 ≥ 𝜏𝑚𝑖𝑛,∀𝑖 ∈ 𝐼

C4:
∑

𝑘∈𝐾1

𝑡𝑜𝑘_𝑏 +
∑

𝑗∈𝐽
𝑏𝑗𝜏

𝑠
𝑗 +

∑

𝑖∈𝐼

(

𝜏𝑢𝑖 + 𝜏𝑑𝑖
)

≤ 𝑇

(34)

Firstly, we have the following lemma on target sensing after a close
bservation of (P3).

emma 2. The maximal value of utility function achieves when ∑

𝑗∈𝐽 𝑏𝑗 =
𝑟𝑒𝑞 , 𝜏𝑠𝑗 = 𝑏𝑗 𝑡𝑐𝑗 ,∀𝑗 ∈ 𝐽 and ∑

𝑘∈𝐾1
𝑡𝑜𝑘_𝑏 +

∑

𝑗∈𝐽 𝑏𝑗𝜏𝑠𝑗 +
∑

𝑖∈𝐼
(

𝜏𝑢𝑖 + 𝜏𝑑𝑖
)

= 𝑇 .

roof. The proof is provided in Appendix B. ■

According to Lemma 2, the solution of TSL selection 𝒃 and the
orresponding time for target sensing 𝝉𝒔 is shown from step 1 to step
of Algorithm 2. Then, (P3) can be transferred into (P4).

𝑃 4) ∶ max
𝝉𝒖 ,𝝉𝒅

𝜂𝑢𝑙
∑

𝑖∈𝐼
𝑅𝑢𝑙,𝑛
𝑖 + 𝜂𝑑𝑙

∑

𝑖∈𝐼
𝑅𝑑𝑙,𝑛
𝑖

s.t. C1: 𝜏𝑢𝑖 , 𝜏
𝑑
𝑖 ≥ 𝜏𝑚𝑖𝑛,∀𝑖 ∈ 𝐼

C2:
∑

𝑖∈𝐼

(

𝜏𝑢𝑖 + 𝜏𝑑𝑖
)

= 𝑇 −
∑

𝑘∈𝐾1

𝑡𝑜𝑘_𝑏 −
∑

𝑗∈𝐽
𝑏𝑗𝜏

𝑠
𝑗

(35)

We regard the subscripts of DL CM-UEs as 𝑖 = 𝐼+1, 𝐼+2,… , 2𝐼 . Since
he objective function of (P4) is monotonically increasing with the time
artitioning variables 𝜏𝑢𝑖 and 𝜏𝑑𝑖 , we propose a heuristic method to solve
t which is shown from step 9 to step 19 of Algorithm 2.

.3. Optimization of task processing mode selection

With the newly obtained spectrum resource allocation, time par-
itioning and TSL selection, we leverage CD method which can suc-
essively optimize binary variables along the coordinate direction to
btain the local optimum solution [39]. Specifically, starting with an
nitial 𝒈0, we denote 𝒈𝑟 as the task processing mode selection decision
t the 𝑟th iteration. Correspondingly, we denote 𝑈 (𝒈𝑟) as the optimal
tility value of (P1) given 𝒈𝑟, which can be obtained by Algorithm 1 and
246
Algorithm 2 Time Partitioning and TSL Selection Solution for (P3)
Require: Given task processing mode selection 𝝆 and the optimized

spectrum resource allocation 𝜸
Ensure: Optimized TSL selection 𝒃∗ and time partitioning 𝝉∗
1: Search for the 𝑏𝑟𝑒𝑞 smallest coherent processing time 𝑡𝑐𝑗 and let the

corresponding 𝑏𝑗 = 1
2: For 𝑗 ∈ 𝐽
3: If 𝑏𝑗 = 1
4: Set 𝜏𝑠𝑗 = 𝑡𝑐𝑗
5: Else
6: Set 𝜏𝑠𝑗 = 0
7: EndIf
8: EndFor
9: Let 𝜏 ′ = 𝑇 −

∑

𝑘∈𝐾1
𝑡𝑜𝑘_𝑏 −

∑

𝑗∈𝐽 𝑏𝑗𝜏𝑠𝑗 − (2𝐼 − 1)𝜏𝑚𝑖𝑛

0: For 𝑞 ∈ 2𝐼
1: Let 𝜏𝑞 = 𝜏𝑚𝑖𝑛

2: EndFor
3: For 𝑞 ∈ 2𝐼
4: Compute 𝑈 (𝑞) by substituting 𝜏𝑞 = 𝜏 ′ into the objective function

of (P4)
5: Let 𝜏𝑞 = 𝜏𝑚𝑖𝑛

6: 𝑞 = 𝑞 + 1
7: EndFor
8: Find the maximal 𝑈 (𝑞) and obtain the corresponding subscript 𝑞′

9: Let 𝜏𝑞′ = 𝜏 ′

Algorithm 2. And let 𝒈𝑟(𝑘) denotes the task processing mode selection
after CP-UE 𝑘 swapping its current mode, i.e.,

𝒈𝑟(𝑘) =
[

𝑔𝑟1, 𝑔
𝑟
2,… , 𝑔𝑟𝑘 ⊕ 1,… , 𝑔𝑟𝐾

]

,∀𝑘 ∈ 𝐾 (36)

where ⊕ denotes the modulo-2 summation operation.
The task processing mode selection in the 𝑟th iteration 𝒈𝑟 is de-

termined by the CP-UE that achieves the highest utility value after
swapping its processing mode. In other words, 𝒈𝑟 = 𝒈𝑟((𝑘𝑟)∗), where
(𝑘𝑟)∗=argmax𝑘=1,…,𝐾𝑈 (𝒈𝑟(𝑘)).

4.4. The overall algorithm for solving (P1)

Based on the above solutions for subproblems, the pseudo-code of
the overall algorithm for solving primal problem (P1) is illustrated
in Algorithm 3. Since the outerloop of Algorithm 3 is CD method,
whose convergence can be guaranteed [40]. We can conclude that
the objective function value of (P1) increases monotonically with the
iterations, and its optimal value is bounded according to Eq. (15), thus
the convergency of Algorithm 3 can be guaranteed.

5. Simulation results and analysis

In this section, we will present some numerical results to evaluate
our proposed RATP scheme for the integrated communication, sensing,
and edge computing network. The main simulation parameters are
shown in Table 2. The scenario setting indicates the number of CP-UEs,
DL and UL CM-UEs. For example, scenario 4 means the numbers of CP-
UEs, DL and UL CM-UEs are setting to be (4,4,4). In order to evaluate
our proposed scheme and algorithm, we illustrate its performance from
three aspects shown in the follows.

5.1. The convergence performance of Algorithm 3

Fig. 4 shows the convergence of the proposed algorithm for solving
resource allocation and time partitioning in integrated communication,
sensing, and edge computing network. It can be seen that the proposed
algorithm can converge within only several iterations w.r.t the total
utility in all scenarios, which proves the feasibility and efficiency of
our proposed Algorithm 3. And apparently, the total utility value has a
positive correlation with the number of UEs.
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Algorithm 3 The Overall Algorithm for Solving (P1)
Require: Initial task processing mode selection 𝝆(0), spectrum resource

allocation 𝜸(0), time partitioning 𝝉(0), TSL selection 𝒃(0), iteration
index 𝑟 = 0, algorithm accuracy indicator 𝜖 and the maximum
number of iterations 𝑟𝑚𝑎𝑥

Ensure: Optimized task processing mode selection 𝝆∗, spectrum re-
source allocation 𝜸∗, time partitioning 𝝉∗ and TSL selection
𝒃∗

1: Compute 𝑈0 with the initialized parameters and variables
2: Repeat
3: 𝑟 = 𝑟 + 1
4: For 𝑘 ∈ 𝐾
5: Update 𝒈𝑟(𝑘) using Eq. (36)
6: Compute 𝑈 (𝒈𝑟(𝑘)) using Algorithm 1 and Algorithm 2
7: EndFor
8: Let 𝑈 𝑟 = max𝑘=1,...,𝐾 𝑈 (𝒈𝑟(𝑘)) and (𝑘𝑟)∗=argmax𝑘=1,...,𝐾𝑈 (𝒈𝑟(𝑘))
9: Update 𝒈𝑟 = 𝒈𝑟 ((𝑘𝑟)∗)

10: Until ||
|

𝑈 𝑟 − 𝑈 𝑟−1|
|

|

≤ 𝜖 or 𝑟 > 𝑟𝑚𝑎𝑥

Table 2
Simulation parameters.

Parameters Values

Scenario settings 3, 4, 5, 6
Spectrum resource limitation 30 MHz
Distance between BS and UEs [50, 100] m
Length of SP 2.5 s
Size of computation tasks [1, 2] Mbits
Complexity of computation tasks [300, 400] cycles/bit
CPU frequency of CP-UEs [1, 2] GHz
CPU frequency of BS 8 GHz
Requirement on UL and DL communication time 0.12 s
Transmitting power of UEs 20 dBm
Transmitting power of BS 30 dBm
Coherent processing time [0.1, 0.2] s
Requirement on the number of TSLs selection 3
Weighting factors for the three kinds of traffic 1, 1, 1

Fig. 4. The convergence behavior of the proposed algorithm.

5.2. The influence of different parameters

Fig. 5 shows the performance of total utility w.r.t the computation
task complexity where 𝑐1, 𝑐2 and 𝑐3 are set to be [200, 300] cycles/bit,
300, 400] cycles/bit and [400, 500] cycles/bit. It shows that when the
ask complexity increases, the total utility value decreases conversely,
hich indicates that higher task complexity will increase the pro-

essing latency of CP-UEs and may result in a situation that CP-UEs
hoose to offload their tasks to the BS for edge computing, which will
hare the spectrum resources with CM-UEs, and finally the UL and DL
ransmission rates decrease.

Fig. 6 presents the influence of local CPU frequency and task size on
he total utility under scenario 6, where the values of local CPU are cho-
en as [0.5, 1, 1.5, 2, 2.5, 3] GHz, and task sizes are [1, 1.2, 1.4, 1.6, 1.8, 2]
bits, respectively. From the simulation results, we can see that the

otal utility value increases with the local CPU frequency of CP-UEs.
he reason is that the CP-UEs can compute their own computation tasks
247
Fig. 5. The total utility versus different levels of computation task complexity.

Fig. 6. The total utility versus different task sizes and local CPU frequencies.

Fig. 7. The total utility versus different target sensing time requirements.

with lower processing latency in terms of higher CPU frequency, which
saves spectrum resources for UL and DL communication. Thus, both
the processing latency of CP-UEs and transmission rate of UL and DL
CM-UEs can be enhanced. As for the influence of computation task size
on the total utility, we can see that when the computation task size
increases, the total utility value decreases conversely, which indicates
that larger task size will increase the processing latency of CP-UEs and
may further occupy more spectrum resources on the task offloading
procedure. Ultimately, it will deteriorate the performance of UL and
DL communication.

The influence of different target sensing time requirements on total
utility is shown in Fig. 7, where 𝑡𝑐1, 𝑡𝑐2 and 𝑡𝑐3 are 0 s, 0.2 s and 0.25
s, respectively. It indicates that the performance of radar sensing will
increases (i.e., the false alarm and detection probability performance)
with larger coherent processing time requirements on the current SP
based on the radar detection principle. However, the larger coherent
processing time leads to smaller available time of the current SP, which
induces less time-domain resources for UL and DL communication.
Thus, the total utility value will decrease when the coherent processing
time requirements increase. Specifically, 𝑡𝑐1 = 0 means that there are
no TSLs need to be sensed by BS in the current SP, which provides the
upper bound performance of our proposed scheme.

In Fig. 8, the performance of total utility w.r.t the different spectrum
resource limitations is presented, where 𝐵𝑊 1, 𝐵𝑊 2 and 𝐵𝑊 3 are
20 MHz, 25 MHz and 30 MHz. It shows that with more spectrum
resources to be shared among CP-UEs and CM-UEs to support their task
offloading, UL and DL communication, the processing latency of task
offloading will be reduced, and the transmission rate of UL and DL
communication will be improved, thus leading to higher total utility
value.
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Fig. 8. The total utility versus different spectrum resource limitations.

Fig. 9. The total utility comparison with baseline schemes under different scenarios.

Fig. 10. The total utility comparison with baseline schemes under different distances.

.3. The performance comparison with baseline schemes

Finally, in order to validate the superiority of our proposed RATP
cheme, Figs. 9 and 10 show the total utility comparison with other
chemes, namely random allocation scheme (RA), equal allocation
cheme (EA), computation task all local processing scheme (AL) and
omputation task all offloading scheme (AO). In Fig. 9, it shows that
he total utility value of the above schemes gradually increases as the
umber of UEs becomes larger. As we can see, the RA scheme performs
orst owing to that the spectrum resources and time partitioning are

andomly selected. AL and AO schemes perform better than RA and
A schemes because they optimize the time partitioning and spectrum
esource allocation of UL and DL communication which are included
n the objective function. Our proposed RATP scheme performs best
mong them because it iteratively optimizes the task processing mode
election, spectrum resource allocation and time partitioning of UL
nd DL communication and target sensing. Moreover, Fig. 10 shows
he scheme comparison under different distances between BS and UEs
here 𝐷1, 𝐷2 and 𝐷3 are [50, 70] m, [70, 90] m and [90, 110] m. And

it proves that no matter what distance is, our proposed RATP scheme
achieves highest utility value.

6. Conclusion and future work

In this paper, we have investigated the integrated communication,
sensing, and edge computing network to meet the requirements of the
 𝑏

248
future wireless system where BS is endowed with the functionalities
of UL and DL data transmission, task processing and target sensing.
Then, we have proposed a RATP scheme to allocate the spectrum
and time resources under this integrated network. Furthermore, we
have formulated an optimization problem to maximize the total utility
function consisting the normalized task processing latency, UL and DL
transmission rate while guaranteeing the performance of radar sens-
ing. In order to solve this non-convex problem, we have decomposed
it into three subproblems to optimize spectrum resource allocation,
time partitioning, TSL selection and task processing mode selection.
Simulation results have confirmed that our proposed algorithm can
converge to an optimal point within few iterations. Moreover, we have
conducted series of numerical simulations to investigate the influence
of parameters of task processing, target sensing and communication on
the total utility value. Lastly, we have also validated the superiority of
the proposed RATP scheme over other comparison schemes.

For future work, although our proposed RATP scheme is suitable
for the specific communication systems, we will further design a more
compatible one involving communication, sensing and computation
for the general mainstream communication systems, and other radar
sensing techniques such as CSI-based sensing will be incorporated.
Besides, we will investigate the energy consumption problem in this
integrated network since various kinds of traffic consume nonnegligible
power, especially in the large-scale network.
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Appendix A. Proof of Lemma 1

Since 𝑊 (𝑥) is an increasing function when 𝑥 ∈ (−1∕𝑒, 0), thus
(

− 1
𝑒𝑥𝑝

(

𝜙𝑢𝑖
)

)

increases when 𝑣 increases. Thus, we can conclude that
𝛾𝑢𝑖 is a monotonically decreasing function w.r.t 𝑣 according to Eq. (29).
Similarly, 𝛾𝑑𝑖 and 𝛾𝑜𝑘 are monotonically decreasing functions w.r.t 𝑣
according to Eqs. (30) and (31). Hence, the left hand of Eq. (33)
is a monotonically decreasing function w.r.t 𝑣. In addition, when
𝑣 → 0, 𝑊

(

− 1
𝑒𝑥𝑝

(

𝜙𝑢𝑖
)

)

→ −1, thus 𝛾𝑢𝑖 → ∞. Moreover, when 𝑣 → ∞,

𝑊
(

− 1
𝑒𝑥𝑝

(

𝜙𝑢𝑖
)

)

→ 0, thus 𝛾𝑢𝑖 → 0. The same conclusions can be applied

to 𝛾𝑑𝑖 and 𝛾𝑜𝑘. Hence, it has one unique solution 𝑣∗ that satisfies
Eq. (33). ■

Appendix B. Proof of Lemma 2

It can be seen from Eqs. (8) and (10) that, with the allocated
spectrum resources 𝛾𝑢𝑖 and 𝛾𝑑𝑖 , the UL and DL transmission rate of
CM-UE 𝑖 increase monotonically with 𝜏𝑢𝑖 and 𝜏𝑑𝑖 . In order to achieve
higher value of utility function, the time partitioning for UL and DL
communication should be as larger as possible, that is ∑

𝑘∈𝐾1
𝑡𝑜𝑘_𝑏 +

𝑗∈𝐽 𝑏𝑗𝜏𝑠𝑗 +
∑

𝑖∈𝐼
(

𝜏𝑢𝑖 + 𝜏𝑑𝑖
)

= 𝑇 . And according to C4 of Eq. (34), the
llocated time for target sensing should be as smaller as possible while
uaranteeing C1 and C2 of Eq. (34). Hence, we can derive ∑

𝑗∈𝐽 𝑏𝑗 =
and 𝜏𝑠 = 𝑏 𝑡𝑐 ,∀𝑗 ∈ 𝐽 . ■
𝑟𝑒𝑞 𝑗 𝑗 𝑗
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