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Abstract. This study establishes a general framework for continuous day-to-day models
to capture the perceptual errors in travelers’ day-to-day route choice behavior. As the
counterpart of the Beckmann transformation, which has been widely used as a candidate
Lyapunov function to prove the stability of continuous day-to-day traffic evolutionmodels
that converge to deterministic user equilibrium, Fisk’s formulation is utilized in our study
as a general Lyapunov function for the day-to-day models that converge to stochastic user
equilibrium (SUE), so far as the path flow growth rates and the “potentials” of the paths
satisfy the condition of negative correlation. A sufficient condition that guarantees the
nonnegativity of the path flow is also provided. The logit dynamic, the logit-based Smith
dynamic, and the logit-based Brown-von Neumann-Nash (BNN) dynamic are given as
three examples under this framework. Moreover, we extend the second-order day-to-day
model proposed by Xiao et al. [Xiao F, Yang H, Ye H (2016) Physics of day-to-day net-
work flow dynamics. Transportation Res. Part B: Methodological 86:86–103.] for SUE. Some
properties of the newmodel, such as fixed point and stability, are investigated. Interestingly,
we find that even when the model converges to SUE, the path flows could still go negative
during the oscillation under extreme situations. A numerical experiment is conducted to
demonstrate the existence of negative path flow for the second-order model.
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1. Introduction
The static traffic assignment models focus on the final
state of distribution of origin–destination (OD) demand
throughout the whole network. It is commonly known
that the interaction (i.e., path choice behavior) between
different paths as well as the road condition (i.e., link
performance function) on the whole network together
determine the final equilibrium states and corre-
sponding travel times. It is reasonable to assume that
a single traveler is always trying to minimize the travel
cost with respect to his or her path choice. A stable
status is reached when all the utilized paths between
the same OD pair experience the same travel time that
is no greater than any of the unused counterpart’s.
Such a status is characterized by the well-known de-
terministic user equilibrium (DUE) condition (Sheffi
1984). The DUE condition requires that the travelers
possess the full information of the whole transportation
network, and travelers are presumed to be able to make
the right choice based on the full information. These

strong presumptions can be relaxed by introducing
the notion of “perceived travel cost,” which can be
viewed as a random variable related to the actual
travel cost. From the random utility theory, travelers
should choose the alternatives that yield the highest
utility between OD pairs, and they always have in-
accurate and distorted perception of path travel costs.
By incorporating a random component in travelers’
perception of travel cost, the choice interaction be-
tween different paths finally results in stochastic user
equilibrium (SUE) (Daganzo and Sheffi 1977). There
are two classical convex optimization problems solv-
ing DUE and SUE, respectively. One is called the
Beckmann transformation (Beckmann et al. 1956), and
the other is Fisk’s formulation (Fisk 1980).
In a real transportation network, it is always ob-

served that some events, such as traffic incidents, demand
variation, capacity modifications, and network changes,
would lead to the change of traffic flow pattern from
equilibrium to disequilibrium (Kumar and Peeta 2015).

1

http://pubsonline.informs.org/journal/trsc/
mailto:evan.fxiao@gmail.com
http://orcid.org/0000-0003-3412-5816
http://orcid.org/0000-0003-3412-5816
mailto:cehyang@ust.hk
http://orcid.org/0000-0001-5210-8468
http://orcid.org/0000-0001-5210-8468
mailto:min-yu.shen@connect.polyu.hk
mailto:379872330@qq.com
mailto:yafeng@umich.edu
mailto:xzt@umich.edu
https://doi.org/10.1287/trsc.2018.0853
https://doi.org/10.1287/trsc.2018.0853


For such cases, the day-to-day models are required to
explain the mechanism of network flow evolution and
the possibility of approachingDUE or SUE state. Under
a day-to-day setting, travelers make decisions today
based on their knowledge of the previous evolution of
the aggregate traffic flows, which itself depends on
each individual’s choice. For mathematical convenience,
many day-to-day models that converge to DUE were
established with continuous variables (Smith 1984,
Nagurney and Zhang 1997, Cho and Hwang 2005, Han
and Du 2012, He and Liu 2012, Guo et al. 2015). As the
counterpart of continuous day-to-day models that
converge toDUE, the continuous SUEmodels also attracted
more and more attention recently in the day-to-day
literature (Watling 1999, Smith andWatling 2016). The
logit dynamic, which first appeared in Fudenberg and
Levine (1998), describes players’ aggregated strategies
evolving toward the logit equilibrium. Different from
this classic model, Smith and Watling (2016) extend
the Smith dynamic to logit-based Smith dynamic to
capture the perceptual errors in travelers’ evaluations
of travel cost. The fixed point is also SUE, and the
stability analysis is conducted by using a quadratic
Lyapunov function, similar to that adopted by Smith
(1984). The difference between the two trajectories of
the logit-based Smith dynamic and logit dynamic
was shown by a simple numerical example.

Most ordinary differential equation–based contin-
uous day-to-day models satisfy the Markov property.
One can make the prediction of travelers’ path choices
in the next day solely on the basis of the previous
day’s traffic flow pattern under different hypothe-
sized flow swapping rules; that is, travelers do not
rely on the information that they achieved in the past
(travelers are memoryless). However, such a simpli-
fication may not be very realistic because the historical
traffic information one possesses would undoubtedly
influence his/her current route choice. Compared
with most continuous models that omit the influence of
historical information, the role of past experience
on travelers’ path choice behavior is widely studied in
the discrete model accompanied with a well-known
learning filter (exponential smoothing filter). In a real
transportation network, the discrete model is more
desirable because the real-time system of repeated
daily trips is indisputably discrete. Since the seminal
paper by Horowitz (1984), the discrete evolution
models have attracted great attention (Cascetta and
Cantarella 1993, Cantarella and Cascetta 1995, Watling
1999, Bie and Lo 2010, Watling and Cantarella 2013).
These perception-basedmodels assume that travelers
possess their own prior knowledge of the trans-
portation network conditions and make path choices
on the basis of their best knowledge. Travelers’
knowledge of the network is normally represented by
their perceived costs on individual paths, which could

be updated according to the new trip experience and
the real-time traffic information until the actual travel
costs are identical to the perceived ones. The network
flow loading process is executed using SUE assign-
ment after the update of the whole network knowl-
edge. In addition to describing the influence of past
information on travelers’ route choices, some litera-
ture also tried to model travelers’ behavior in pre-
dicting others’ route choices. On the basis of the notion
of strategic thinking of rational players in behavior
game theory, He and Peeta (2016) modeled drivers’
prediction of others’ response to the current traffic
situation by formulating the marginal cost. He and
Liu (2012) incorporated the commuters’ prediction
behavior by proposing a prediction-correction model
and calibrated the proposed model by field data
collected after the collapse of the I-35W bridge.
Looking at the literature of day-to-day models and

evolutionary games, the Beckmann transformation has
been endowed with some interesting physical mean-
ing. In game theory, the traffic assignment models can
be regarded as typical examples of “potential games.”
In a potential game, the incentives of all players’
strategy benefits are mapped into one global potential
function. From this point of view, Beckmann trans-
formation can be assigned a physical-like meaning of
“potential” for a transportation system. Beckmann
transformation has also been used as a candidate
Lyapunov function to prove the stabilities of quite
a few day-to-day systems (Peeta and Yang 2003, Jin
2007, Kumar and Peeta 2015), so far as they follow the
rational behavior adjustment process (RBAP), which
states that “the aggregated travel cost in the system
based on previous day’s path travel costs will decrease
when the path flow evolves from day to day” (Yang
and Zhang 2009). Five typical continuous dynamical
models—the proportional-switch adjustment (Smith
1984), the network tâtonnement process (Friesz et al.
1994), the projected dynamical system (Nagurney and
Zhang 1997), the evolutionary traffic dynamic (Sandholm
2001), and the simplex gravity flow dynamic (Smith
1983)—are proved to follow RBAP. For these day-to-
day models, the value of Beckmann transformation
would always decrease at each time step as the time
evolves and reaches its minimum at the equilibrium
point, which can be analogous to the minimum total
potential energy principle in physics. Very recently,
Xiao et al. (2016) constructed a second-order flow-based
day-to-day dynamic from the combination of travelers’
learning process and flow swapping process. This
study endowed an explicit physical meaning to this
objective function by investigating the interaction be-
tween the defined kinetic energy and potential energy in
a transportation network.
In this paper, by defining “potential” of a path in

a transportation network, we establish a class of
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day-to-day models that converge to SUE. Under this
framework, Fisk’s formulation can be utilized as a
general Lyapunov function for those dynamical sys-
tems. At SUE, the potential of every route is equal and
the Lyapunov function is minimized. We show that the
logit dynamic (Sandholm 2010) and the logit-based
Smith dynamic (Smith and Watling 2016) both be-
long to this framework. The only difference between
them is that the logit dynamic adopts “logit choice”
based on potentials of the paths, whereas the logit-
based Smith dynamic is based on pairwise comparison
between the potentials of all routes. We also extend the
second-order model in Xiao et al. (2016) by replacing
the actual travel cost with potential to capture the
randomness in the route-choice process. The fixed
point of the new dynamical system then transfers from
DUE to SUE. We show that a new Lyapunov function
can be used to demonstrate the stability of the system.
However, we demonstrate that the new system faces
the similar problem of negative flow with the model in
Xiao et al. (2016), even when all the path flows are
positive at SUE.

The rest of this paper is organized as follows.
Section 2 introduces the concept of stochastic traffic
assignment. Section 3 establishes a general day-to-
day dynamic model for SUE based on the definition of
revision protocol and shows that the logit-based Smith
dynamic and the logit dynamic are both special cases.
Besides, a logit-basedBrown–vonNeumann–Nash (BNN)
dynamic is developed based on BNN dynamic (Brown
and Von Neumann 1950). Fisk’s formulation is proved
to be a general Lyapunov function for the above dy-
namical systems. The analogy of the system to the phase
equilibrium in thermodynamics is also presented. Sec-
tion 4 introduces a new second-order dynamical system
that converges to SUE. The Lyapunov function is con-
structed by adding the entropy function to the total
energy function defined in Xiao et al. (2016); and the exis-
tence of negative flow is proved. The last section concludes
the whole study and highlights some future directions.

2. The Stochastic Traffic
Assignment Problem

To begin with, we first introduce the traditional sto-
chastic traffic assignment problem with separable link
cost functions. Suppose a directed traffic network
consists of W OD pairs with positive traffic demands
dw, where N donates the set of nodes and A the set of
links. Let Rw denote the set of all paths connecting OD
pair w ∈W and |Rw | denote the number of elements
in Rw. Furthermore, the flow and cost on path r∈Rw
between OD pair w ∈W are denoted by frw and crw, and
the flow and cost on link a∈A are denoted by va and ca.
Let the matrices Δ � [δa,rw] and Λ � [λrw] denote the
link-path and OD-path incidence matrices, respectively,
where δa,rw equals 1 if path r uses link a and 0 otherwise,

and λrw equals 1 if path r connects OD pair w and
0 otherwise. Then the path cost crw can be expressed by
crw � ∑

a∈Acaδa,rw. The feasible solution set of path flows
can then be expressed by

Ω≜ {f| v � Δf,d � Λf, f> 0}. (1)

Following Fisk (1980), we can obtain the fixed-demand
SUE by the following minimization problem,

G(f) � min
∑
a∈A

∫ va

0
ca(ω)dω + ∑

w∈W

∑
r∈Rw

θw frwln( frw) (2)

subject to Ω, where θw is a dispersal parameter called
the noise level. As shown by Fisk (1980), it can be
derived from the Kuhn–Tucker conditions of the op-
timization problem that

fsw
frw

� exp(−csw/θw)
exp(−crw/θw) , ∀r, s∈Rw, w ∈W (3)

which is exactly SUE. If cost function c is continuous
and monotone on Ω, (2) is strictly convex, so that
there exists a unique SUE solution (Cantarella and
Cascetta 1995).

3. A Framework for SUE Day-to-Day
Dynamics Without User Learning

Based on the revision protocols, a general form of
day-to-day dynamic for SUE is developed in this
section. We illustrate how the well-known logit dy-
namic (Fudenberg and Levine 1998) and the logit-
based Smith dynamic (Smith and Watling 2016) can
be included in this framework. Moreover, we build an
additional logit-based BNN dynamic within this frame-
work, which extends the BNN dynamic (Brown and
Von Neumann 1950) from DUE to SUE. A general
Lyapunov function (Fisk’s formulation) is proposed to
prove the asymptotic stability of the system.

3.1. A General Day-to-Day Model for SUE
We first define the “potential” of a path r∈Rw, µrw, by
taking the partial derivative of (2) with respect to path
flow frw,

µrw � crw + θw(ln frw + 1). (4)

Because the noise level θw is a parameter only dependent
on OD pairw, without loss of generality, the constant “1”
can be ignored in (4). Then (4) can be simplified as

µrw � crw + θwln frw. (5)

With the above definitions, we have the following theo-
rem for the relationship between path potential and SUE.

Lemma 1. At SUE, the potentials of all the paths con-
necting the same OD pair are equal.
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Proof. The proof is straightforward. Substituting (3)
into (5), we get

µrw � µsw ∀r, s∈Rw,w ∈W. (6)

That is, the potentials are equal for all the paths con-
necting the same OD at SUE. □

To capture drivers’ perception error when choosing
paths, we redefine the revision protocols in Sandholm
(2010) with the noise level, θ.

Definition 1. Let ρ(c,θ, f) ≥ 0 be a revision protocol that
depends on path cost, c, path flow, f, and noise level, θ,
where ρrs,w(cw,θw, fw) describes the swapping rate of
each traveler from path r to path s connecting OD pair w.

Then the mean dynamic corresponding to revision
protocol, ρ, can be built as below

dfrw
dt

� ∑
s∈Rw

fswρsr,w − frw
∑
s∈Rw

ρrs,w, ∀r∈Rw,w ∈W. (7)

The microscopic interpretation is as follows: assume
every driver is equipped with a stochastic alarm
clock and the times between rings of drivers’ clocks
are independent. The ringing of a clock signals the
arrival of a revision opportunity for the clock’s owner.
The owner will make their decision corresponding
to revision protocol. For more details, readers may refer
to Sandholm (2010). Next, we will show three examples
that are special cases of the mean dynamic (7).

3.1.1. The Logit-Based Smith Dynamic. Suppose the
revision protocol ρ has the following form

ρsr,w�αwmax(0,µsw− µrw), ∀r, s∈Rw,w ∈W, (8)

where αw > 0 is a scalar coefficient, which is assumed to
be only dependent on OD pair w. Equation (8) implies
that there is only one-way route swapping from the
route with high potential to the route with low po-
tential; and the swapping rate is proportional to the
difference between the two potentials of the routes.
Substituting (5) and (8) into (7), we get the logit-based
Smith dynamic,

dfrw
dt

� αw

(∑
s∈Rw

fsw max(0, csw + θwln fsw − crw − θwln frw)

−∑
s∈Rw

frw max(0, crw + θwln frw − csw − θwln fsw)
)
.

(9)

3.1.2. The Logit Dynamic. Assume the revision pro-
tocol ρ does not depend on drivers’ current strategies;
in other words, the probabilities that travelers on dif-
ferent paths switch to the same path are equal. Then,

ρsr,w can be replaced by αwτrw, where ρsr,w :�αwτrw.
From Equation (7), we have

dfrw
dt

� αw

(
dwτrw − frw

∑
s∈Rw

τsw

)
,∀r, s∈Rw,w ∈W. (10)

We further assume that
∑

s∈Rwτsw � 1,∀r, s∈Rw,w ∈W.
This assumption is not very restrictive, beause the
only effect of replacing τsw with its scalar multiple
τrw/

∑
s∈Rwτsw is to change the speed at which the evo-

lutionary process runs by a constant factor and the scalar
multiple can be incorporated into αw. Such dynamic is
called exact target dynamic (Sandholm 2010). When∑

s∈Rwτsw � 1, Equation (10) can be written as

dfrw
dt

� αw(dwτrw− frw),∀r, s∈Rw,w ∈W. (11)

Here τrw can be regarded as a probability that the
travelers will choose path r. From the perspective of
random utility theory, travelers may have inaccurate
and distorted perceptions of path travel costs in which
the “perceived travel cost” is constructed by adding
stochastic perturbations to the actual travel cost of each
path. At time t + δt, a traveler chooses the best response
to the vector of travel cost, c(t), that has been perturbed
by a random vector ε(t). Then the probability that path
r∈Rw would be chosen can be defined as

τrw(f) � P
(
r � argmin

s∈Rw

(csw(f) + εs)
)
. (12)

If the random terms εs are independently and identically
distributed Gumbel variates, τrw can be calculated by

τrw(f) � exp(−crw/θw)∑
s∈Rw exp(−csw/θw). (13)

Substituting (13) into (11) yields the logit dynamic

dfrw
dt

� αw

(
dw

exp(−crw/θw)∑
s∈Rw exp(−csw/θw

) − frw

)
. (14)

To understand the logit dynamic from the perspective
of path potential, µrw, let f∗w � dwτw, and f∗w is de-
termined by the following problem

f∗w � argmin
f∈Ωw

∑
r∈Rw

frwµrw, (15)

where µrw( frw) � crw + θwln frw, is the potential of path
r, except that here crw is fixed and not dependent on frw.
We then have

d frw
dt

� αw( f ∗rw − frw). (16)

The dynamical system (16) indicates that the path flow
pattern would move from the current flow pattern f
toward a target flow f∗ pattern at each day-to-day time,
and f∗ is determined by (15).

Xiao et al.: Continuous Day-to-Day Models for SUE
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It is worth noting that here Equation (15) is equiv-
alent to finding the SUE at each day-to-day time with
fixed link travel cost. The dynamical system (15)–(16)
formulates the flow dynamic by defining the target
flow pattern that is determined by both the travelers’
cost-minimization behaviors and reluctance to change
routes. The cost-minimization behavior is essentially to
find the path with lowest potential for each OD pair,
and the inertia effect existing in travelers is captured by
defining the distance between the target flow pattern
and current flow pattern.

Lemma 2. The dynamical system (15)–(16) coincides with
the logit dynamic model.

Proof. The Lagrangian of the minimization problem (15)
can be written as

L(f∗,γ) �∑
r∈Rw

f ∗rwcrw + ∑
w∈W

θw
∑
r∈Rw

f ∗rwln f
∗
rw

+ ∑
w∈W

γw(dw −∑
r∈Rw

f ∗rw). (17)

The first-order conditions are

f ∗rw
∂L(f∗,γ)
∂f ∗rw

� f ∗rw(crw + θwln f ∗rw + θw − γw) � 0, (18)

f ∗rw > 0, crw + θwln f ∗rw + θw − γw � 0, (19)
∂L (f∗,γ)

∂γw
� dw − ∑

r∈Rw

f ∗rw � 0. (20)

With (18)–(20), we have

f ∗rw � dw
exp(−θwcrw)∑

s∈Rwexp(−θwcsw). (21)

Substituting (21) into (16) we have

dfrw
dt

� αw

(
dw

exp(−θwcrw)∑
s∈Rwexp(−θwcsw

) − frw

)
, (22)

which is exactly the logit dynamic. □

3.1.3. The Logit-Based BNN Dynamic. Without con-
sidering the perceived travel cost, Yang (2005) assumed
that the swapping rate is proportional to the sum of
excess path cost

τrw(f) � max{0, −crw + c̄w}, (23)

where c̄w � (∑
r∈Rwcrwfrw

)/
dw. Substituting (23) into (7),

we get the BNN dynamic

dfrw
dt

� αw

(
dwmax{0, c̄w − crw} − frw

∑
s∈Rw

max{0, c̄w − csw}
)
.

(24)

To extend the BNN dynamic from DUE into SUE with
consideration of the perceived travel cost, a reasonable

assumption is that the swapping rate is proportional to
the sum of excess potential

τrw(f) � max{0, −µrw + µ̄w}, (25)

where µ̄w � (∑
r∈Rwµrw frw

)/
dw. Substituting (5) and (25)

into (7) yields the logit-based BNN dynamic

dfrw
dt

�αw

(
dwmax{0, µ̄w− µrw}− frw

∑
s∈Rw

max{0, µ̄w− µsw}
)
.

(26)

3.2. A General Lyapunov Function
Beckmann et al. (1956) constructed a mathematical
minimization problem to calculate the static user
equilibrium, which is now called “Beckmann
transformation”

min
∑
a∈A

∫ va

0
ca(ω)dω. (27)

In the day-to-day literature, many studies (Peeta and
Yang 2003, Jin 2007, Kumar and Peeta 2015) have
proved the asymptotic stability of their day-to-day
models by viewing Beckmann transformation as the
Lyapunov candidate function. In this section, we will
prove that, similar to the day-to-day models con-
verging to DUE, Fisk’s formulation can be utilized
as a general candidate Lyapunov function for the
day-to-day model (7) for SUE, which includes the
logit dynamic, the logit-based Smith dynamic, and
the logit-based BNN dynamic.

Proposition 1. If the fixed point of a day-to-day dynamic
coincides with SUE and the following condition holds

ḟ(t)
{∈Φ if Φ≠[
� 0 if Φ � [

where Φ � {ḟ(t):µT ḟ(t)< 0},∀t> t0,

(28)

then the function

V1(f) � G − Gmin (29)

can be a candidate Lyapunov function and the day-to-day
dynamic asymptotically converges to SUE.

Proof. Substituting (2) into (29) and taking the first-
order derivative, we have

dV1(f)
dt

� ∂

∂t

(∑
a∈A

∫ va(f)

0
ca(ω)dω

)

+∑
w∈W

∑
r∈Rw

∂

∂t
(θw frw ln frw)

(30)

� ∑
w∈W

∑
r∈Rw

crw ˙frw + ∑
w∈W

∑
r∈Rw

θw(ln frw + 1) ˙frw (31)

� ∑
w∈W

∑
r∈Rw

µrw
˙frw + ∑

w∈W
θw

∑
r∈Rw

˙frw. (32)
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Here (31) requires that the link cost functions are sep-
arable (i.e., the travel cost of a link is only dependent on
its own flow). From the flow conservation condition, we
know that

∑
r∈Rw

˙frw � 0, for ∀w ∈W. Thus, we have

dV1(f)
dt

� ∑
w∈W

(µw)T ḟw(t) ≤ 0. (33)

Equations (33) can be obtained by condition (28), and the
equality holds if and only if the day-to-day dynamic
reaches SUE. Function G monotonically decreases, and
we have

V1(f) ≥ 0, (34)

where the equality holds if and only if the dynamic
reaches SUE. Then by Lyapunov’s second theorem (Sell
1962), the day-to-day dynamic model asymptotically
converges to SUE. □

Lemma 3. The logit-based Smith dynamic satisfies the
condition (28).

Proof. The fixed point of the logit-based Smith dy-
namic coincides with SUE, and this has been proved in
Smith and Watling (2016). Here we show that the logit-
based Smith dynamic meets the condition (28). For
each OD pair w, we number the paths according to
their potentials in a decreasing order, then we have
µ1w ≥µ2w ≥⋯≥µ|Rw |w

. Then we have

∑|Rw |

i�1
µiw

˙fiw � µ1w

(
−∑|Rw |

i�2
αwf1w(µ1w − µiw)

)

+ µ2w

(
−∑|Rw |

i�3
αwf2w(µ2w − µiw)

+∑1
i�1

αwfiw(µiw − µ2w)
)
+⋯

+ µ|Rw |w

∑|Rw |−1

i�1
αwfiw(µiw − µ|Rw |w

)

� −∑|Rw |

i�2
αwf1w(µ1w − µiw)2

−∑|Rw |

i�3
αwfr2w(µ2w − µiw)2 −⋯

− ∑|Rw |

i�|Rw |

αwf(|Rw |−1)w (µ(|Rw |−1)w − µiw)2 ≤ 0.

(35)

Because (35) holds for any w ∈W, we have µT ḟ(t) ≤ 0,
and the equality holds if and only if µ1w � µ2w �
. . . � µ|Rw |w

, which represents SUE. □

Lemma 4. The logit dynamic satisfies the condition (28).

Proof. See theorem 6.2.10 in Sandholm (2010) with the
notion of virtual positive correlation. □

Lemma 5. The logit-based BNN dynamic satisfies the
condition (28).

Proof. For ∀w ∈W, we can define

Ψw � {∀r∈w, µ̄w >µrw}. (36)

Then

τrw �
{−µrw + µ̄w if r∈Ψw

0 if r ∉Ψw
. (37)

From the logit-based BNN dynamic (26), we have

∑|Rw |

i�1
µiw

˙fιw � ∑
r∈Rw

(
µrw

(
dwτrw − frw

∑
s∈Rw

τsw

))

� dw
∑
r∈Rw

(µrwτrw) −
(∑
s∈Rw

τsw

)∑
r∈Rw

(µrw frw)

� dw
∑
r∈Rw

(µrwτrw) −
(∑
s∈Rw

τsw

)
(µ̄wdw)

� dw

(∑
r∈Rw

(µrwτrw) − µ̄w

(∑
s∈Rw

τsw

))

� dw

(∑
r∈Ψw

(µrw(−µrw + µ̄w))

− µ̄w

(∑
r∈Ψw

(−µrw + µ̄w)
))

� dw

(∑
r∈Ψw

−(µrw− µ̄w)2
)
≤ 0. (38)

Because (38) holds for any w ∈W, we have µT ḟ(t) ≤ 0,
and the equality holds if and only if µ1w � µ2w �
. . . � µ|Rw |w

, which represents SUE. □

From Lemmas 3–5 and Proposition 1, it is straight-
forward to conclude thatV1(f) is a candidate Lyapunov
function for the logit-based Smith dynamic, the logit
dynamic, and the logit-based BNN dynamic. As
a result, the three dynamics asymptotically converge
to SUE.

Lemma 6. Let frminw, rmin ∈Rw,w ∈W be the minimum path
flow in the network at any time t≥ t0. If limfrminw→0+ frminw·∑s∈Rwρrmins,w � 0, for ∀t> t0, then under the day-to-day

dynamic (7), f> 0.

Proof. From definition, ρ≥ 0. Then at any time t, if
f(t)> 0, we have

∑
s∈Rw fsw ρsrmin,w≥ 0; and from the as-

sumption we also have lim frminw→0+ frminw
∑

s∈Rwρrmins,w � 0.
Combining the two and the day-to-day dynamic (7), we
have

lim
frminw→0+

dfrminw

dt
� lim

frminw→0+

∑
s∈Rw

fswρsrmin,w≥ 0, ∀r∈Rw.

(39)

Because (39) holds for any time t, we have that
f(t)> 0, for ∀t> t0. □
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It is not hard to prove that the logit-based Smith
dynamic, the logit dynamic, and the logit-based BNN
dynamic all follow the assumption of Lemma 6 (Online
Appendix A). Thus, the path flows can never turn
negative for the three models during the flow oscillation.

3.3. Analogy to Thermodynamics
In the literature of traffic assignment models, initially,
Beckmann’s transformation was not endowed any
intuitive economic or behavioral interpretation and
was only viewed strictly as a mathematical construct to
solve DUE (Sheffi 1984). However, in the day-to-day
literature, some studies (Peeta and Yang 2003, Jin 2007,
Kumar and Peeta 2015, Xiao et al. 2016) have proved
the asymptotic stability of their day-to-day models
by viewing Beckmann transformation as the Lya-
punov candidate function, which assigned physical
meaning to this objective function: the potential
energy. The potential energy of the transportation
network would always decrease at each time step as
the time evolves and reaches its minimum at the
equilibrium point, which can be generalized by the
minimum total potential energy principle in physics.
Inspired by the analogy between day-to-day dy-
namics for DUE and physical systems, in this section
we reveal a similar analogy between the day-to-day
dynamics for SUE and the chemical reaction in
a mixture in thermodynamics. We show that Fisk’s
formulation can be interpreted as the synonymous
“Gibbs free energy” of a transportation network.
Similar to the RBAP defined in Yang and Zhang
(2009) with respect to the deterministic day-to-day
model, the Gibbs free energy decreases during the
flow evolution. The equilibrium is obtained when the
“chemical potential” of each route is equal and the Gibbs
free energy reaches minimum.

To beginwith, we introduce briefly themathematical
model of multiphase equilibrium. Suppose an equili-
brated ice-water mixture in environment (T1,P1) is
suddenly moved to a new environment (T2,P2), where
T and P denote temperature and pressure of the
mixture, respectively. Because of the temperature and
pressure changes, the original equilibrium is broken.
Then the composition proportions of ice and water
would change, and the chemical reaction between them
can be expressed as below

H2O(l)!H2O(s). (40)

Chemical reaction (40) is reversible. Chemical equi-
librium is reached when the reaction rates in both di-
rections are equal.

Let Gice−water be the Gibbs free energy of the ice-water
mixture, which is defined as

Gice−water � XlGl + XsGs + K(XllnXl + XslnXs), (41)

where Xl,Xs, denote the amounts of the two substances.
Gl,Gs denote standardmolar Gibbs free energy, and K is
a constant at certain temperature and pressure. It is
worthmentioning thatGl,Gs do not depend onXl,Xs. So
Equation (41) can also be written as

Gice−water

�
∫ Xl

0
Gl(ω)dω+

∫ Xs

0
Gs(ω)dω+K(XllnXl+XslnXs). (42)

Chemical potential is known as partial molar free
energy and is a form of potential energy that can be
absorbed or released during a chemical reaction.
From Equation (41) we can obtain the chemical potential
of water molecule in the liquid phase, µwater

l , and in the
solid phase, µwater

s , by taking the partial derivatives of
Gice−water with respect to Xl and Xs, respectively.

µwater
l � Gl + K(lnXl + 1) (43)

µwater
s � Gs + K(lnXs + 1). (44)

According to the aggregate theory, water molecules
tend to move from high chemical potential status
to low chemical potential status, and the chemical
equilibrium is reached when µwater

l � µwater
s . Because

chemical potential is relative, without loss of gen-
erality, the constant “1” can be ignored in (43) and
(44), and the chemical potential is usually defined as

µ � G + KlnX. (45)

And we introduce the well-known Gibbs free energy
minimum principle, which states that the Gibbs free
energy will decrease and approach aminimum value at
equilibrium in a closed system.
In a traffic network, each driver has his/her own

perception of the current network state and makes
route choices on the basis of the perceived path costs. It
is interesting to see that the dynamic transportation
system is similar to the multiphase system in the fol-
lowing ways:

1. They both have multiple “phases.” In a traffic
network, the multiple paths connecting the same OD
pair act as the role of “phase.”

2. Both processes are “reversible” and “spontane-
ous.” In the transportation system, some drivers would
spontaneously swap from path r to path s, and at the
same time some drivers would spontaneously swap
from path s to path r. The reason is that perceived travel
cost is a random variable.
Inspired by the multiphase system in Thermody-

namics, we will define the Gibbs free energy and
chemical potential of a transportation network and
investigate the flow dynamics and equilibrium from
the perspective of energy.
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We regard the path flow frw as the amount of sub-
stance and the path cost crw as the standard molar
Gibbs free energy. By analogy to Equation (42), the
“Gibbs free energy” of a day-to-day dynamical system,
Gtra, can be defined as

Gtra(f) �
∑
a∈A

∫ va

0
ca(ω)dω + ∑

w∈W

∑
r∈Rw

θw frwln ( frw), (46)

which is exactly taking the form of the “Fisk’s formula-
tion” in Equation (2). Similar to Equations (43) and (44),
the chemical potential of a route, µrw, can be found by
taking the partial derivative of (46) with respect to path
flow frw,

µrw � crw + θw(ln frw + 1). (47)

Definition (46) can be explained by analogy to the
multiphase system in thermodynamics. In a mixture,
the chemical potential of a component can be derived
by taking the partial derivative of the total Gibbs en-
ergy of the system with respect to the amount of the
component. In a transportation system, it should follow
the similar definition, that is, the chemical potential of
a route should be the partial derivative of the total
Gibbs energy of the transportation system with respect
to the traffic flow of the route. From this definition,
Fisk’s formulation becomes a “must” to define the total
Gibbs energy of a transportation system (considering
a general network topology). Similar to the multiphase
system in thermodynamics, θw is a parameter only
dependent on OD pair w. Without loss of generality,
the constant “1” can be ignored in (47), and the
chemical potential of a path can be simply defined as

µrw� crw + θwln frw, (48)

which is consistent with the definition (5) we made be-
fore. Additionally, from Proposition 1, we know that the
system will lose its “Gibbs free energy” gradually until it
stops at SUE point, which is consistent with theminimum
Gibbs free energy principle in thermodynamics.

4. A Second-Order Model for Day-to-Day
Dynamics with Stochastic Route Choice
and User Learning

In this section, we propose a new day-to-day model
that extends the second-order model under DUE
(Xiao et al. 2016) to the case of dynamical system
converging to SUE, to capture the drivers’ perceptual
errors in evaluation of travel cost.

4.1. Formulation Second-Order Day-to-Day Model
for SUE

Xiao et al. (2016) constructed a second-order flow-
based day-to-day dynamic from the combination of

travelers’ learning process and flow switching pro-
cess. The aggregate flow switching process is de-
termined by pairwise comparison of perceived travel
cost on each route. By analogizing to the damped
harmonic oscillator system, the model showed that
the dynamical system will eventually approach the
DUE path flow pattern with the defined kinetic and
potential energies decreasing to their minima. In this
paper, we call this model the second-order DUE dy-
namical model, which is shown below

¨frw + βw
˙frw − αwβw

∑
s∈Rw

(csw − crw) � 0, (49)

where αw represents travelers’ sensitivity to the dif-
ference of travel costs between each two routes. βw is
the memory decay rate associated with OD pairw. The
total energy of the system (49) is defined as the
summation of potential energy and kinetic energy,

E(f) � Ep + Ek �
∑
a∈A

∫ va(f)

0
ca(ω)dω + ∑

w∈W

∑
r∈Rw

1
2
mw

˙frw
2
,

(50)

where mw � 1/(αwβw |Rw |) represents “mass” of each
route. For more details, the reader can refer to Xiao et al.
(2016). This model combines the learning process and
flow swapping process from a natural perspective.
However, it ignores the drivers’ perceptual errors in
evaluating travel cost. The purpose of this section is to
extend the above model to the case of a dynamical
system converging to SUE, to capture the randomness
in the route-choice process. The pairwise comparison
implied in this model is similar to the pairwise route
swapping dynamic (Smith and Watling 2016), and by
the analysis in Section 3.1 that the drivers tend to swap
from the path with high potential to the path with low
potential, the following second-order model for SUE is
then constructed

¨frw + βw
˙frw − αwβw

∑
s∈Rw

(µsw − µrw) � 0. (51)

For high-order dynamical systems, it is convenient to
degrade the order by letting x1,rw � frw, x2,rw � ẋ1,rw.
Then the flow evolution process (51) can be charac-
terized by Equations (52)–(53)

[
ẋ1
ẋ2

]
�
[

x2
αβg(x1) − βx2

]
(52)

g(x1)� (grw, r∈Rw,w ∈Rw), where grw�
∑
s∈Rw

(µsw − µrw)

(53)

α is a diagonal matrix with the element equals to αw at
(r,w) and 0 otherwise;β is a diagonal matrix with the
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element equals to βw at (r,w) and 0 otherwise;θ is
a diagonal matrix with the element equal to θw at (r,w)
and 0 otherwise. Here θw is defined by (5).

4.2. Existence of Negative Path Flow
To avoid negative path flow, assumption 1 in Xiao et al.
(2016) assumes that the path flows only evolve in the
interior of the feasible path flow set. Because at SUE
every path will have positive flow, can this assumption
be relaxed for dynamical system (52)–(53)? Unfortu-
nately, in the following we will prove that even under
the second-order dynamical system converging to SUE,
the path flow could still penetrate 0 and turn negative
under extreme situations.

Let us first define the convex set of demand-route flows

D � {x1:x1 ∈Rn with Ax1 � q}, (54)

where A denotes the OD-route incidence matrix. q is
the OD demand vector. Then we define the set of
n-vectors with all the path flows are positive

S � {x1:x1 ∈Rn with x1,rw > 0 for r � 1, 2, . . . , n}. (55)

As we have proved before, the Lyapunov function will
decrease as the dynamical system evolves. That is

V(x(t)) ≤V(x(0)). (56)

Let L � V(x(0)), then V(x(t)) ≤L for all t≥ 0, that is

∑
a∈A

∫ va(x1(t))

0
ca(ω)dω + ∑

r∈Rw

θw(x1,rw(t)ln(x1,rw(t)))

+ ∑
w∈W

∑
r∈Rw

1
2
mwx22,rw(t) ≤ L.

(57)

The demand is fixed and cannot be arbitrarily large. Then
the path flow is bounded by the OD demand. Moreover,
ca( · ) is nonnegative, so the term

∑
a∈A∫ va(x)0 ca(ω)dω is

also bounded. Let us say

0<
∑
a∈A

∫ va(x1(t))

0
ca(ω)dω≤M. (58)

When x1,rw → 0, x1,rwln(x1,rw)→ 0, and x1,rwln(x1,rw)
reaches the minimum at x1,rw � 1/e. As a result, when
the demand is fixed,

∑
r∈Rwθw(x1,rw ln(x1,rw)) is also

bounded. Let us say

−N1 <
∑
r∈Rw

θw(x1,rw(t) ln(x1,rw(t))) ≤N2. (59)

From Equations (57)–(59), we have

0≤ ∑
w∈W

∑
r∈Rw

1
2
mwx22,rw(t) ≤ L +N1. (60)

Then we have that the path flow change rate x2,rw �
ẋ1,rw at any time t is bounded

−B≤ x2,rw(t) ≤B. (61)

The dynamical system (52)–(53) states that for path r
connecting OD pair w, the first-order derivative of path
flow change rate is

ẋ 2,rw(t) � αwβw
∑
i∈Rw

(ciw(t) − crw(t)) + αwβwθw
∑
i∈Rw

(lnx1,iw(t)
− lnx1,rw(t)) − βwx2,rw(t).

(62)

Let us look at the path with the smallest flow at any
time t, x1,min(t), say it is between OD pair w; and we can
also find the maximum flow x1,max(t) between OD pair
w. Because the demand for ODpairw is bounded by dw,
we have x1,max(t) ≤ dw. We assume that

−C≤αwβw
∑
i∈Rw

(ciw(t) − crw(t)) ≤C. (63)

With (61)–(63), we have

ẋ 2,min(t) ≤C + αwβwθw
∑
i∈Rw

(lndw − lnx1,min(t)) + βwB

� C + |Rw |αwβwθwlndw + βwB − |Rw |αwβwθwlnx1,min(t).
(64)

Let C + |Rw |αwβwθwlndw + βwB � H, then we have

ẋ2,min(t) ≤H − |Rw |αwβwθwlnx1,min(t). (65)

Now themotion of the system is equivalent to a particle
moving in a straight line, with the initial position,
x1,min(t0), initial speed, x2,min(t0), and acceleration,
ẋ2,min(t). Assume the mass of the particle is m. Then the
force on the particle is equal to

F � ẋ2,min(t)m. (66)

The initial kinetic energy of the system

K � 1
2
m(x2,min(t0))2. (67)

When x1,min(t)→ 0+, the accumulated work done by the
force approaches

W � m
∫ x1,min(t0)

0
ẋ2,min(x)dx

≤m
∫ x1,min(t0)

0
(H − |Rw |αwβwθwlnx)dx

� m(Hx1,min(t0)
− |Rw |αwβwθwx1,min(t0)lnx1,min(t0)
+ |Rw |αwβwθwx1,min(t0)).

(68)
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Suppose when x1,min(t)→ 0+, the system speed is v0+ ,
from the energy conservation law

1
2
mv0+2 � 1

2
m(x2,min(t0))2 −W

≥ 1
2
m(x2,min(t0))2 −m(Hx1,min(t0)

− |Rw |αwβwθwx1,min(t0)lnx1,min(t0)
+ |Rw |αwβwθwx1,min(t0)). (69)

Thus, as long as the right-hand side of the inequality
(69) is positive, that is

x2,min(t0)

>

�������������������������������������������������������������
2(Hx1,min(t0) − |Rw |αwβwθwx1,min(t0)lnx1,min(t0)
+ |Rw |αwβwθwx1,min(t0)).

√
(70)

The path flow will penetrate 0 and turn negative.
We present a simple numerical example to dem-

onstrate the existence of the negative flow when
condition (70) is satisfied. The numerical case is
conducted with the aid of the “NDSolve” function
provided byMathematica software. A very small “max
step size” (Δt � 10−4) is chosen to guarantee that the
negative flow is not due to the discretization of the
numerical solution. The example is conducted in
a simple network that has a single OD pair served by
two parallel links. The total demand is 50. The link
performance functions are given by c1 � 15 + 1.5f1 for
link 1 and c2 � 20 + 1.2f2 for link 2. The sensitivity
coefficient α, the memory decay rate β, and the SUE
dispersion parameter θ are fixed to be 3.5, 0.6, and 1,
respectively.

To demonstrate the existence of negative path flow,
we fix the initial link flow pattern ( f1(t0), f2(t0)) to be
(25, 25) and vary the initial speed of link 1, | ḟ1(t0)|, from
0 to 90. Note that the equation ḟ1(t0) + ḟ2(t0) � 0 should
be satisfied to guarantee the flow conservation.
Figure 1 shows that the larger absolute initial speed
would lead to a relatively more dramatic oscillation
of link flows. When the initial speed is sufficiently
large (In this numerical example, the critical value is
| ḟ1(t0)| � 60.31), the path flow on link 1 penetrates 0. At
this point the dynamical system (52)–(53) becomes
invalid, because ln( · ) is not defined for negative
values.

To guarantee that dynamical system (52)–(53) is al-
ways valid during the evolution process, we make an
assumption below

Assumption 1.1 Define

Θ � {x1 |x1 > 0,Λx1 � d},

where x1 > 0 means that all the elements of x1 are posi-
tive, and

Υ � {x2 |x2,rw ∈R,∑r∈Rw
x2,rw � 0,∀r∈Rw,w ∈W}.

We assume that, starting with any point in Θ×Υ, the
trajectories of x under dynamical process (52)–(53) will
always stay in Θ×Υ.

4.3. Stability of the Proposed Model
When the concept of path potential is applied to the
second-order dynamical system considering the user-
learning phenomenon, the fixed point transfers from
DUE to SUE with the influence of the added term, and
the stability analysis becomes more complicated than
the first-order dynamic models. We first give the fol-
lowing proposition.

Lemma 7. x∗1 ∈Ω coincides with SUE, if and only if x∗ �[ x∗1
0

]
is a fixed point of the dynamical system (52)–(53).

Proof. The fixed point of dynamical system (52)–(53)
can be expressed by

[
ẋ∗1
ẋ∗2

]
�
[

x∗2
αβg(x∗1) − βx∗2

]
�
[
0
0

]
. (71)

Then we have

x∗2 � 0, g(x∗1) � 0, (72)

which yields∑
s∈Rw

(µsw − µrw) � 0, ∀r∈Rw. (73)

Equations (73) holds if and only if

µsw � µrw ∀r, s∈Rw. (74)

Using the definition of chemical potential (48) and
rearranging the equation, we have

x∗1,rw
x∗1,sw

� exp(−crw/θw)
exp(−csw/θw) ∀r, s∈Rw. (75)

From Equation (75), x∗1 exactly coincides with SUE. □

Inspired by the results in Section 3, we establish the
candidate Lyapunov function for the second-order
SUE model

E(x) � Gtra + Ek

� ∑
a∈A

∫ va(x1)

0
ca(ω)dω + ∑

w∈W

∑
r∈Rw

θw frwln ( frw)

+ ∑
w∈W

∑
r∈Rw

1
2
mwx22,rw. (76)
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Lemma 8. The minimum point of function E(x) is obtained
at x∗ �

[ x∗1
0

]
, where x∗1 is the SUE path flow.

Proof. With the assumption that the cost function is
strictly increasing, it is obvious that E(x) is strictly
convex, which implies that E(x) has a unique minimum
point. The Lagrangian is as follows

L(x,γ) � E(x) + ∑
w∈W

γw

(
dw − ∑

r∈Rw

x1,rw
)
. (77)

The first-order optimality conditions are

x∗1,rw
∂L(x,γ)
∂x∗1,rw

� x∗1,rw(c∗rw + θwlnx∗1,rw + θw − γw
∗)

� 0, ∀r∈Rw, w ∈W, (78)

c∗rw + θwlnx∗1,rw + θw − γw
∗ � 0, x∗1,rw > 0, ∀r ∈Rw, w ∈W,

(79)
∂L(x,γ)
∂x∗2,rw

� mwx∗2,rw � 0 ∀r∈Rw,w ∈W. (80)

From Equations (79) and (80), we conclude that x∗1 is the
SUE path flow and x∗2 � 0. □

Proposition 2. Under Assumption 1, the function

V2(x) � E(x) −minE(x) (81)

is a candidate Lyapunov function of dynamical system (52)–(53),
and the dynamical system asymptotically converges to SUE.

Proof. Please refer to Online Appendix B.

5. Conclusion and Future Research
In this study, a general framework is established for the
day-to-day dynamics converging to SUE, via the def-
inition of path potential in a transportation network.
Both the logit dynamic and logit-based Smith dynamic
are contained in this framework, so that the connection
between them is revealed. Moreover, we extend the
traditional BNN dynamic and the second-order dy-
namic developed in Xiao et al. (2016) for SUE. By
analogy to the concepts of Gibbs free energy in ther-
modynamics, we define the Gibbs free energy for
a transportation network, which takes the form of
Fisk’s formulation. We prove that Fisk’s formulation
can be utilized as a general Lyapunov function for the
first-order day-to-day dynamics for SUE, and the Lya-
punov function for the second-order day-to-daydynamics
for SUE is also found. A sufficient condition to prevent
negative path flow for the first-order models is provided.
However, for the second-order model, we find that the
pathflow could still go negative owing to the inertia of the
system, even when the system converges to SUE with
positive path flows.
This study provides another interesting example that

the traditional concepts and principles in physics may
have their counterparts in transportation area. Conse-
quently, human’s aggregate behavior may be governed
by some physical laws. A bridge is built from the
deterministic day-to-day models that converge to DUE
to their stochastic counterparts by replacing the travel
costs of the paths with their potentials. Through this
bridge, numerous existing deterministic day-to-day
models may potentially be extended to capture the
randomness in travelers’ route choice behavior in the

Figure 1. Evolutions of Flow on Link-1 Under Different Initial Speeds, ḟ 1(t0)
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future. The Lyapunov-stability of these models can be
guaranteed by viewing Fisk’s formulation as a candidate
Lyapunov function, so far as they satisfy the condition of
negative correlation, which requires the path flow
growth rates to be negatively correlated with the path
potentials.

Endnote
1This assumption is more relaxed than the assumption 1 in Xiao et al.
(2016), because the path flows at SUE are always positive by definition.
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