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Abstract. This paper proposes a novel quantity-based demand management system that
aims to promote ridesharing. The system sells a time-dependent permit to access a road
facility (conceptualized as a bottleneck) by auction but encourages commuters to share
permits with each other. The commuters may be assigned one of three roles: solo driver,
ridesharing driver, or rider. At the core of this auction-based permit allocation and sharing
system (A-PASS) is a trilateral matching problem (TMP) that matches permits, drivers, and
riders. Formulated as an integer program, TMP is first shown to be tightly bounded by its
linear relaxation. A pricing policy based on the classical Vickrey–Clarke–Groves (VCG)
mechanism is then devised to determine the payment of each commuter. We prove that,
under the VCG policy, different commuters pay exactly the same price as long as their role
and access time are the same. Importantly, by controlling the number of shared rides, any
deficit that may arise from the VCG policy can be eliminated. This may be achieved with a
relatively small loss to system efficiency, thanks to the revenue generated from selling per-
mits. Results of a numerical experiment suggest A-PASS strongly promotes ridesharing.
As sharing increases, all stakeholders are better off: the ridesharing platform receives great-
er profits, the commuters enjoy higher utility, and society benefits frommore efficient utili-
zation of the road infrastructure.
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1. Introduction
The traditional travel demand–management approach
either sets the price or controls the quantity of travel
in order to persuade travelers to reduce the number of
trips or switch to modes with greater average vehicle
occupancy. The price-based approach, widely known
as congestion pricing, eliminates excessive congestion
by forcing travelers to pay a toll to make up for the
discrepancy between their average and marginal trav-
el costs (see, e.g., Pigou 1920, Small and Gómez-
Ibáñez 1998). The quantity-based approach, on the
other hand, directly chooses an “optimal” amount of
traffic allowed to access a facility. The access may be
distributed through reservation (Wong 1997), auction
(Teodorović et al. 2008, Nie 2012), random draw
(Wang, Yang, and Han 2010; Nie 2017), or tradable
credits (e.g., Yang andWang 2011, Nie and Yin 2013).

Promoted as a low-cost strategy to increase average
vehicle occupancy, carpool gathered much interest in
the late 1970s and early 1980s (Chan and Shaheen
2012, Shaheen and Cohen 2018). Yet, by 1990, the tide

had long receded with the share of carpools in U.S.
work trips declining from 19% in 1980 to about 13.4%
in 1990 (Ferguson 1997). Transportation network com-
panies (TNCs) have revived the enthusiasm for ride-
sharing as their technology dramatically reduces the
cost of pairing riders and pricing rides (Shaheen and
Cohen 2019). Santi et al. (2014) show that as much as
80% of the taxi trips in Manhattan could be shared at
the expense of a modest increase in travel time. Strict-
ly speaking, the e-hail service provided by most TNCs
is not a form of “sharing” as the drivers are in it to
make money. Yet TNCs do provide rides that are
shared by passengers if only partially. Such a service
is often called ride-pooling. Trends toward pooling
seem strong in the TNC industry although one has to
read some of the lofty claims1 with caution. In addi-
tion, some TNCs have begun to offer true ridesharing
services, such as Waze Carpool, Scoop, and RideAmi-
gos (Shaheen and Cohen 2019). Although effective
ridesharing can and should play a critical role in man-
aging travel demand, it offers limited incentives to
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influence travel behaviors. Here, we propose to incentiv-
ize ridesharing by combining it with traditional demand-
management tools, and we argue that integrating the
two creates a more effective and balanced approach.

To showcase the idea, we devise an auction-based
permit allocation and sharing system (A-PASS) in the
context of ridesharing for the morning commute. In
our setting, all commuters own a car and participate
in ridesharing through A-PASS as either a solo driver,
a ridesharing driver, or a rider. Travel is simplified as
passing through a bottleneck with a limited capacity
in the spirit of Vickrey (1969) and Arnott, de Palma,
and Lindsey (1990). A-PASS aims to eliminate conges-
tion by ensuring the number of commuters arriving at
the bottleneck at any time never exceeds the capacity.
It accomplishes this goal by instituting an access-by-
permit rule. To use the bottleneck, commuters must
either acquire a permit from an auction administered
by A-PASS or ride with a driver to share a permit.
A-PASS not only auctions out permits, but also simul-
taneously matches riders and drivers based on their
reported preferences. As such, it solves a trilateral
matching problem (TMP) that involves permits tied to a
time slot, drivers, and riders in order to determine for
each commuter (1) the ridesharing role, (2) the time
slot, (3) the matching partner, and (4) the payment.
Through this mechanism, A-PASS obtains both the
resource (i.e., the revenue from selling permits) and the
tools (pricing and matching) to achieve its goal: serving
as many commuters as possible at a minimum societal
cost (total congestion delay less social welfare).

There are two reasons why combining a permit auc-
tion with ridesharing creates a win–win solution. First
and foremost, because the matching problem leads to
a double auction, it is impossible to design a desirable
pricing policy without running a deficit (Myerson and
Satterthwaite 1983). By “desirable,” we mean the poli-
cy simultaneously leads to efficient matching (alloca-
tive efficiency (AE)), makes the auction attractive to
participants (individual rationality (IR)), and eliminates
the incentive for lying about one’s personal preferen-
ces (incentive compatibility (IC)). In fact, the prospect of
running large deficits is an important reason why
many auction schemes fail in practice. Consequently,
the auctioneer is often forced to sacrifice efficiency in
exchange for budget balance (BB). However, combining
a permit auction with ridesharing promises a solution
to the deficit problem because the revenue obtained
from selling bottleneck permits can be used to subsi-
dize ridesharing. The second reason is more technical
and has to do with incentive compatibility. If the auc-
tion of the bottleneck capacity is separated from the
assignment of ridesharing roles (i.e., permits and ride-
sharing are handled by different auctioneers), it is
difficult, if not impossible, to prevent a traveler from
lying about preferences in one auction for a greater

gain in the other simply because neither auctioneer
would learn the traveler’s preferences to their full ex-
tent. Consequently, the inability to prevent such
cheating is bound to lower allocative efficiency and re-
duce social welfare.

Our contributions to the literature are summarized
as follows.

• Through A-PASS, we put forth a new idea for travel
demand management that combines ridesharing, an auc-
tion, and quantity-based travel demandmanagement.

• The trilateral matching problem created by
A-PASS has not been studied in the literature. We for-
mulate this problem as an integer program and show
that it is tightly bounded by its linear relaxation thanks
to the special constraint structure.

• We prove that the Vickrey–Clarke–Groves (VCG)
pricing mechanism (Vickrey 1961, Clarke 1971, Groves
1973) ensures IR, AE, and IC. However, no pricing poli-
cy can simultaneously satisfy these three properties in
a double auction without running a deficit. The VCG
policy is no exception.

• To address the deficit problem, we exploit the
trade-off between the deficit and the number of shared
rides in trilateral matching. Specifically, we develop a
numerical method that determines an optimal number
of shared rides to achieve a desired revenue target (rev-
enue neutral or maximization) using a revised VCG
policy.

• A strict implementation of A-PASS requires creat-
ing a detailed matching table that specifies the role of
each commuter, each driver–rider pair, and the access
time for everyone. At first glance, such a requirement
seems cumbersome, if not impractical. However, the
applicability of A-PASS is not restricted by this require-
ment. Instead, it can be used simply as a tool to elicit
travel preferences and to price the time-dependent ac-
cess to a congested facility according to the ridesharing
role. We show this is made possible by a property of
the proposed pricing mechanism, which ensures the
overall price a commuter has to pay does not vary
from individual to individual, but rather is solely deter-
mined by the access time and their role in ridesharing.

For the remainder, Section 2 first reviews the related
studies. Section 3 introduces A-PASS in the context of
a morning commute, and Section 4 defines and formu-
lates the trilateral matching problem. Sections 5 and 6
discuss, respectively, pricing policies and implemen-
tation issues. Results of numerical examples are re-
ported and discussed in Section 6, and Section 7
summarizes the main findings and suggests topics for
future research.

2. Related Studies
The proposed permit allocation and sharing scheme is
closely related to quantity-based travel management
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and auction-based pricing for ridesharing. We focus
on these topics.

2.1. Quantity-Based Travel Management
Directly controlling the access to a road facility can be
achieved through various ways. A crude but widely
embraced method takes away the access from a subset
of drivers based on a random draw, typically accord-
ing to the last digit of their vehicle’s license plate
(Cambridge Systematics 2007; Wang, Yang, and Han
2010; Nie 2017). More sophisticated schemes attempt
to use the optimal load of the facility to guide the ac-
cess control. When the demand is greater than the op-
timal load, the question is how to determine who
should be granted what access. Several schemes have
been considered in the literature.

Wong (1997) and Akahane and Kuwahara (1996)
describe a highway reservation system that receives,
evaluates, and accepts/rejects reservations for high-
way access. Drivers who are turned down are given
the opportunity to resubmit alternative reservations.
Through a simulation study, De Feijter, Evers, and
Lodewijks (2004) show such a system reduces delays
and improves travel reliability. Edara and Teodorović
(2008) further operationalize the idea by implement-
ing two subsystems, an off-line system that preallo-
cates access to different classes of users and an online
system that processes reservations in real time.

Reservation-based allocation does not ensure access
is awarded to those who value it the most. This short-
coming can be addressed by selling it to the highest
bidders. The transaction can be managed using two
methods. The first method, widely known as a trad-
able credit scheme, first distributes access permits
(credits) evenly to travelers, who then trade the per-
mits with each other until a desirable allocation is
achieved (e.g., Akamatsu, Sato, and Nguyen 2006;
Yang and Wang 2011; Wang et al. 2012; Nie and Yin
2013; Akamatsu and Wada 2017). The focus of this
study is the second method, which sells permits to
travelers directly through auction.

Teodorović et al. (2008) propose an auction scheme
that sets the maximum number of drivers allowed to
enter a cordoned area. Drivers submit their sealed
bids (the private price they are willing to pay to gain
access) to the auctioneer, who grants access by solving
a winner-determination problem. Wada and Akamat-
su (2013) extend the auction scheme to a general net-
work with multiple bottlenecks and origin–destination
pairs. Drivers in such a network must choose a path
that consists of multiple bottlenecks. The number of
travelers allowed to pass each bottleneck is limited by
its capacity, and drivers must acquire, through a com-
binatorial auction, a unique permit for each bottleneck on
the path. The winner-determination problem is decom-
posed into two subproblems that are solved iteratively.

The first subproblem allocates a certain number of per-
mit bundles to each path, and in the second, the fixed
permit bundles are sold to drivers through an ascend-
ing auction that ensures truthful reporting. Su and
Park (2015) implement an auction scheme using a com-
mercial traffic simulator. In their case study, drivers
employ a “blind search” strategy to choose between a
fallback option (a slow arterial road) and bidding for
the permit to use a faster expressway. The winner-
determination problem is solved using a heuristic that
ranks all the submitted bids and approves feasible re-
quests in descending order of the bids. Through a stat-
ed preference survey, Basar and Cetin (2017) found no
“outright rejection” of the auction scheme among driv-
ers who have experience with congestion pricing.

2.2. Pricing Ridesharing by Auction
The literature on ridesharing has grown substantially
in recent years. The reader is referred to Agatz et al.
(2012); Furuhata et al. (2013); and Mourad, Puchinger,
and Chu (2019) for comprehensive reviews. Our focus
here is auction-based pricing for ridesharing.

An auction is often used to solve matching
problems arising from two-sided markets, such as as-
signing riders to drivers. When solving the winner-
determination problem, a challenge is to ensure
agents report their bids truthfully. The classical solu-
tion to this problem is to set the price based on the
VCG mechanism (Vickrey 1961, Clarke 1971, Groves
1973). Hence, this type of pricing policy has been
widely used in ridesharing. In the agent-based ride-
sharing (ABC) system proposed by Kamar and Hor-
vitz (2009), agents report their private driving cost,
and ABC computes a payment using a VCG pricing
policy. Following Parkes, Kalagnanam, and Eso
(2001), a budget-balance constraint is added into the
winner-determination problem, which solves the defi-
cit problem caused by the VCG policy at the expense
of losing the insurance of truthful reporting. Kleiner,
Nebel, and Ziparo (2011) allow agents to declare their
role (rider or driver) and use an auction to rank and
assign riders to each driver. To ensure truthful report-
ing, a second-price policy (i.e., the winner pays the
price of the next bidder in the ranking) is employed.
In Zhao et al. (2014), an agent’s\valuation of a shared
ride is computed based on the reported preferences
for (1) departure time window, (2) number of avail-
able seats, and (3) private trip cost. To address the
deficit problem, two revised pricing schemes are pro-
posed: the first is a fixed payment scheme, and the
second is a two-sided reserve pricing scheme. Al-
though both schemes can achieve budget balance,
their impact on the matching rate is not controlled.
Zhao, Ramchurn, and Jennings (2015) further examine
the pricing issue when agents may not be able to
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complete their trip because of uncertainty. They show
that ensuring truthful reporting is much more difficult
in this case. Zhang, Wen, and Zeng (2016) design a
discounted trade reduction mechanism to ensure a
high matching rate in ridesharing. Zhang, Wu, and
Bei (2018) allow the drivers to impose a reserve price
according to the origin–destination information and
show it is an individually rational, incentive compati-
ble, and computationally efficient mechanism. Bal-
seiro et al. (2019) design a ridesharing pricing scheme
applied over a finite horizon and impose a set of con-
straints to ensure periodic individual rationality, dy-
namic incentive compatibility, no positive transfers,
and promise keeping. Their design objective, howev-
er, is to maximize the profit of the platform. Li, Nie,
and Liu (2020) consider a ridesharing system in which
participants price shared rides based on both operat-
ing cost and schedule displacement. To avoid deficits,
they propose a single-side reward pricing policy,
which only compensates participants who are forced
to endure schedule displacement.

To summarize, the trade-off between deficits and
other desired properties (AE, IC, and IR) is at the heart
of the auction design for ridesharing. In practice, bal-
ancing the budget is typically achieved at the expense
of allocative efficiency. By combining a permit auction
with ridesharing, this study offers a unique and po-
tentially win–win solution to this challenge.

3. Permit Allocation and Sharing System
In Section 3.1, we describe a permit allocation and
sharing system for managing a morning commute. Be-
cause the travel permits are distributed using an auc-
tion, Section 3.2 explains how commuters value their
bids for permits and how their utility is determined
by the system’s pricing policy.

3.1. Preliminaries
Consider a set of heterogeneous travelers I � 1, 2,{
⋯ , i, ⋯ , I}, who commute from home to a workplace
via a bottleneck with a constant capacity c. Without
loss of generality, we assume all travel occurs within a
time window T � 0,T[ ] and every commuter has a
preferred arrival time t ∈ T (Arnott, de Palma, and
Lindsey 1990). In this paper, we assume the preferred
arrival time is heterogeneous. Given the finite capacity
of the bottleneck, commuters cannot all arrive at their
preferred arrival time t, and those whose arrival time
is displaced bear a schedule cost proportional to the
displacement. Because the desire for punctual arrival
creates congestion in the form of queueing at the bot-
tleneck, commuters are forced to make a trade-off
between the schedule cost and queueing delay by ad-
justing their departure time. Eventually, this trade-off

leads to a Nash equilibrium. However, such an equi-
librium is not desirable because the queuing delay is a
deadweight loss to the system. Vickrey (1969) sug-
gests the queueing delay be completely eliminated by
a time-varying toll. He shows that, faced with such a
toll, commuters would depart at a rate exactly equal
to the bottleneck capacity. Therefore, an alternative to
Vickrey’s toll is to enforce the number of commuters
passing through the bottleneck not to exceed its capaci-
ty at any time. This can be achieved by dividing T into
small intervals and selling permits by auction to match
the capacity of each interval (Wang et al. 2018). In the
following, we propose a new travel-management sys-
tem that integrates such a permit auction scheme with
ridesharing. Because the system effectively encourages
drivers to share their permits with riders, it is called an
A-PASS.

As illustrated in Figure 1, A-PASS first receives re-
quests from commuters that detail their preferences. It
then processes these requests through allocation and
sharing functions. The former sells permits tied to
each passing time slot to both solo and ridesharing
drivers, effectively “allocating” them into each slot.
The sharing function is responsible for matching ride-
sharing drivers to riders who are willing to purchase
a seat from them. It is worth emphasizing that these
functions are seamlessly integrated through A-PASS
and executed simultaneously as a trilateral matching
problem. We next explain how each component of
A-PASS works.

A-PASS divides the entire analysis period T into
a set of discrete time slots M � 0, 1, 2, ⋯ ,m,{ ⋯ ,M}
with equal lengths Δt � T

M+1. For each given time slot
m, the number of permits sold is capped by C � �cΔt�,
where �a� is the largest integer less than or equal to a.
We assume each time slot is short enough so that per-
mit holders would arrive randomly within each slot,
causing only negligible congestion.

To acquire the right to pass through the bottleneck
at a prespecified time, each commuter must declare
their request as follows:

Definition 1 (Commuter Request). The request of com-
muter i ∈ I consists of five pieces of private informa-
tion regarding travel preferences: (i) the maximum
willingness to pay (MWTP) for a bottleneck permit as
a driver (λi), (ii) the desired price for sharing a seat in
the vehicle with a rider (pi), (iii) the MWTP for a seat
in a shared ride (μi), (iv) the private cost per unit
schedule displacement (bi),2 and (v) the preferred ar-
rival time (ti). Commuter i’s request is written as a tu-
ple λi,pi,μi,bi, ti

( )
.

To simplify the analysis, the following assumptions
are introduced.
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Assumption 1. Every commuter has a car and is willing
to accept one of three possible roles—solo driver, rideshar-
ing driver, or rider—assigned by A-PASS.

Assumption 2. Each driver can accept at most one rider
and is paid by the rider at a price determined by A-PASS.
Other than the payment, the costs associated with rideshar-
ing (e.g., waiting, pick up, and drop off) are not explicitly
modeled and are implicitly included in the commuter’s
MWTP.

Assumption 3. By restricting access, A-PASS ensures no
congestion ever arises at the bottleneck. Hence, all commut-
ers experience exactly the same travel time, which is nor-
malized to zero.

Assumptions 1 and 2 are fairly common in recent ri-
desharing studies (e.g., Xu et al. 2015; Liu and Li 2017;
Wang, Ban, and Huang 2019), but Assumption 3 war-
rants a bit more explanation. Riders tend to value their
in-vehicle time more highly because they can use it
more productively (Ma and Zhang 2017, Zhong et al.
2020). Normalizing the free flow travel time to zero
appears to wipe out this difference. We note that,
however, the commuters in our model should be able
to discern this difference because they report μi (the
maximum price paid to get a seat) and pi (the price of
sharing a seat) separately.

When a decision is made based on user-reported
preferences, an important concern has to do with the
truthfulness of the reported information. Here, we as-
sume that commuters are self-interested individuals
who are eager to independently exploit any loopholes
in the system.

Assumption 4. Commuters have incentive to misreport
their travel preferences if doing so benefits them, but they
would not collude with others.

3.2. Valuation and Utility
We are now ready to explain how A-PASS computes
a commuter’s valuation for a given role and a time
slot based on the commuter’s request. Let K �
{−1, 0, 1} be the set of possible roles that a commuter
can take on, where –1, 0, and 1 represent, respectively,
rider, solo driver, and ridesharing driver.

Definition 2 (Valuation Policy). Suppose commuter i is
assigned a role k ∈K in a time slot m. The implicit bid-
ding price, vki,m, is defined as

vki,m �
λi − bi�i,m − pi k � 1
λi − bi�i,m k � 0
μi − bi�i,m k � −1

, ∀i ∈ I ,m ∈M,
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

where �i,m represents the schedule displacement for
commuter i passing through the bottleneck within
time slot m.3

For solo drivers or riders, the price they are willing
to pay is their MWTP less the schedule cost. Thus, the
valuation of any slot m decreases as �i,m and/or bi
increases. Everything else equal, commuters with a
larger bi are more likely to be granted a smaller
displacement because it leads to a higher valuation. A
ridesharing driver’s valuation of the same slot is that
of a solo driver less the price the driver expects to
charge the rider. Clearly, when pi is sufficiently large,
the ridesharing driver would expect to be paid by the
system to drive through the bottleneck. This valuation
policy implies commuters value the same schedule
displacement differently based on bi. The policy also
forbids a ridesharing driver from varying the seat
price according to the time slot.

We proceed to define the utility of a commuter
based on this valuation policy. To this end, we first
define the charge levied by A-PASS on commuter i as

Figure 1. (Color online) Auction-Based Permit Allocation and Sharing System
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qi. Note that qi can be negative, which means a
commuter could get paid. Further, we distinguish the
valuations based on truthful reporting from others.
Hereafter, a symbol with a bar header (i.e., ¯̇) is used to
represent a variable associated with truthful report-
ing. Specifically, we define

v̄ki,m �
λ̄i − b̄i�̄ i,m − p̄i k � 1
λ̄i − b̄i�̄ i,m k � 0
μ̄i − b̄i�̄ i,m k � −1

, ∀i ∈ I ,m ∈M,
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (2)

as the true valuation of commuter i for role k and time
slot m.

Definition 3 (Utility of a Commuter). If commuter i’s re-
quest to use the bottleneck is turned down, commuter
i’s utility is zero. Otherwise, supposing commuter i is
assigned a role k in time slot m, commuter i’s utility is
defined as commuter i’s true valuation less the price
paid to A-PASS for a seat or a permit, that is,

uki,m � v̄ki,m − qi: (3)

A-PASS may reject some requests when the bottle-
neck capacity is tight relative to the number of commut-
ers. Commuters who are not awarded a bottleneck
pass are assumed to have a fallback option with a utili-
ty of zero. This is a reasonable assumption as any bid-
der would naturally have a fallback option against
which the bid (in our case, the four private parameters
included in the request) is made. A bid is acceptable
only if it yields a better utility than that of the fallback
option, which is typically normalized to zero. The utili-
ty of a commuter whose request is accepted depends
on a number of decisions made by A-PASS: the time
slot and role and with whom the commuter is
matched. We now turn to these decisions.

4. Trilateral Matching Problem
Upon receiving all requests, A-PASS must determine
for all commuters: (1) their role k ∈K, (2) to which
time slot m they are assigned, and (3) their rideshare
partner if k � 1 or −1. The system makes these deci-
sions by solving a trilateral matching problem that
aims to maximize the social welfare (or the total
valuations).

To represent the decisions, let zki be the binary role
assignment variable zki � 1 if commuter i is assigned
role k and zero otherwise, xi,m be the binary time slot
assignment variable xi,m � 1 if driver (solo or not) i is
allocated into time slot m and zero otherwise, and
yi,j,m represent the binary trilateral matching variable
yi,j,m � 1 if ridesharing driver i is matched with rider j

and the pair is allocated into time slot m. We use z, x,
and y to represent the corresponding vectors.

The TMP for A-PASS can be formulated as the fol-
lowing integer program:

TMP max
∑
i∈I

∑
m ∈M

v0i,mxi,m +∑
i∈I

∑
j∈I

∑
m∈M

v−1j,m − pi
( )

yi,j,m

(4a)
subject to : ∑

m∈M
xi,m ≤ 1, ∀i ∈ I , (4b)

∑
i∈I

∑
m∈M

yi,j,m ≤ 1, ∀j ∈ I , (4c)

∑
j∈I

∑
m∈M

yi,j,m ≤ 1, ∀i ∈ I , (4d)

∑
j∈I

yi,j,m ≤ xi,m, ∀i ∈ I , ∀m ∈ M, (4e)

∑
i∈I

xi,m ≤ C, ∀m ∈ M, (4f)

z1i �
∑
j∈I

∑
m∈M

yi,j,m, ∀i ∈ I , (4g)

z−1j � ∑
i∈I

∑
m∈M

yi,j,m, ∀j ∈ I , (4h)

z0i �
∑
m∈M

xi,m −∑
j∈I

∑
m∈M

yi,j,m, ∀i ∈ I , (4i)

∑
k∈K

zki ≤ 1, ∀i ∈ I , (4j)

zki ∈ 0, 1{ }, ∀i ∈ I , ∀k ∈ K, (4k)
xi,m ∈ 0, 1{ }, ∀m ∈ M, ∀i ∈ I , (4l)

yi,j,m ∈ 0, 1{ }, ∀m ∈ M, ∀i ∈ I , ∀j ∈ I : (4m)

Objective (4a) maximizes the total private valuations,
which can also be interpreted either as the total social
welfare or the system allocative efficiency. Constraint
(4b) ensures that every commuter is allocated into no
more than one time slot. Constraints (4c) and (4d) en-
force one-to-one matching between riders and drivers.
Constraint (4e) states that, if a driver is matched with
a rider, they must be allocated into the same time slot.
For a ridesharing driver, the inequality in this con-
straint becomes equality. Constraint (4f) requires the
total number of permits sold not to exceed the bottle-
neck capacity. Constraints (4g)–(4j) specify the relation
between role assignment variables z, time slot assign-
ment variables x, and matching variables y. Con-
straints (4k)–(4m) dictate that all decision variables
are binary.

A general integer program such as Problem (4) is
NP-hard. However, Problem (4) has a special struc-
ture that makes it relatively easy to solve because its
linear relaxation generally provides high-quality lower
bounds. We formally state this result as follows.
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Proposition 1. Construct a linear relaxation of Problem
(4) as follows:

RL − TMP

max
∑
i∈I

∑
m∈M

v0i,mxi,m +∑
i∈I

∑
j∈I

∑
m∈M

v-1j,m-pi
( )

yi,j,m

(5a)
subject to:

(4b) − (4j), (5b)

0 ≤ zki ≤ 1, ∀i ∈ I , ∀k ∈ K, (5c)
0 ≤ xi,m ≤ 1, ∀m ∈ M, ∀i ∈ I , (5d)

0 ≤ yi,j,m ≤ 1, ∀m ∈ M, ∀i ∈ I , ∀j ∈ I : (5e)

The optimal objective function value of Problem (4)
equals that of Problem (5).

Proof. See Online Appendix B. w

Solving TMP gives optimal allocation and sharing de-
cision vector x∗,y∗,z∗

[ ]
. Let Ĩ denote the set of all win-

ning commuters in x∗,y∗,z∗
[ ]

. Accordingly, we define
the total system throughput (i.e., the number of commut-
ers allowed to pass the bottleneck within T ) as

Z �∑
i∈I

∑
k∈K

zk,∗i , (6)

and the maximum social welfare (the optimal objec-
tive function value of Problem (5)) as

V �∑
i∈I

∑
m∈M

v0i,mx
∗
i,m +∑

i∈I

∑
j∈I

∑
m∈M

v−1j,m − pi
( )

y∗i,j,m: (7)

Further, V−i is introduced to represent the maxi-
mum social welfare of the system when the request of
commuter i is removed, V−i,m− denotes the maximum
social welfare when the request of commuter i is re-
moved and the capacity of time slot m decreases from
C to C – 1, and V−ij,m− denotes the maximum social
welfare when the requests of commuter i and j are
both removed and the capacity of time slot m de-
creases from C to C – 1.

Note that we only need to solve TMP once to deter-
mine optimal allocation and sharing decisions. To
price the participants—which must be done repeated-
ly as explained in the next section—we only need to
evaluate the value V−i, which can be obtained by solv-
ing the much easier LP relaxation.

5. Pricing Policies
Once the optimal permit allocation and sharing deci-
sions are reached, A-PASS needs to decide how to
price permits and seats. This price is set for each com-
muter as qi, which specifies howmuch each commuter
needs to pay A-PASS (qi ≥ 0) or be paid (qi < 0). We
denote a pricing policy as q and the profit of the sys-
tem as

W �∑
i∈Ĩ

qi: (8)

Before discussing various policies that the system
can choose, we first explain what properties are de-
sired for such a policy.

Definition 4 (Desired Properties of a Pricing Policy). A
pricing policy q is said to be BB if W � 0 or weak bud-
get balancing if W ≥ 0; it is IR if qi ≤ vki,m for each win-
ning commuter i ∈ Ĩ and IC if no commuter can im-
prove utility by misreporting the bid valuation.

The most straightforward policy is called the first
price policy, denoted as q−. Using this policy, A-PASS
simply sets the price to match each commuter’s re-
ported valuation as defined in Equation (1). The fact
that q− is IR is self-evident by inspecting the defini-
tion. It must be BB because V under the policy equals
the profit, and it should always be nonnegative. To
see why V can never be negative, note that, in the
worst case, A-PASS can simply choose to do nothing,
which would balance the budget (i.e., V � 0). The fact
that any permit allocation and sharing occurs at all
implies that V ≥ 0.

The problem with the first price policy is that the
system has no protection at all against speculative be-
haviors of commuters. If a significant portion of com-
muters misrepresent their preferences, the allocation
of the permits would be severely distorted from the
optimal solution. A standard approach to addressing
this concern is to invoke the VCG policy, which may
be simply described as a second price policy, originating
from having the winner whose bid price is the highest
pay the price offered by the second highest bidder in
a single-round, sealed auction (Vickrey 1961, Clarke
1971, Groves 1973). In what follows, we show that the
VCG policy works as intended in our setting. We de-
note the second pricing policy, or the VCG policy, as
q+. Algorithm 1 describes an implementation of the
policy in A-PASS. Our focus is to show that the imple-
mentation ensures truthful reporting in trilateral
matching.

Algorithm 1 (Second Price Policy)
1: Input: The request λi,μi,bi,pi, ti

( )
from each com-

muter i ∈ I .
2: Output: Commuters winning travel permits with-

in T , that is, x∗,y∗,z∗
[ ]

and a pricing policy q+.
3: Trilateral matching problem:
4: Solve Problem (4) to obtainV and x∗,y∗,z∗

[ ]
.

5: Second price problem:
6: for every winner i ∈ Ĩ do
7: Calculate V−i by resolving Problem (5) without

commuter i.
8: Set the bonus for commuter i as ρ+

i � V −V−i.
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9: Set the second price on commuter i as
q+i � vki,m − ρ+

i .
10: end for
11: Return x∗,y∗,z∗

[ ]
and q+.

We first show that the second price policy is IR,
which is straightforward.

Proposition 2. The second price policy q+ obtained from
Algorithm 1 satisfies IR in Definition 4.

Proof. It is easy to see that V ≥ V−i because V−i is the
social welfare of a subset of the users included in
the system that yields V. Hence, ρ+

i must be nonnega-
tive as per Algorithm 1, which implies that ρ+

i � vki,m−
q+i ≥ 0. w

It should be noted that the second price policy does
not automatically ensure truthful reporting (Conitzer
and Sandholm 2006). Its applicability in our setting is
not obvious because commuters’ utility depends on
their role. We separate the proof in several steps. Let
us first propose and prove the following lemmas.

Lemma 1. Suppose that commuter i reports a valuation as
λi,μi,bi,pi, ti
( )

; then,
i. If the commuter is not allocated into any time slot, that

is, z∗i � z0i ,z
1
i ,z

−1
i

( ) � (0, 0, 0), the commuter’s utility is zero.
ii. If the commuter is allocated into time slot m as a solo

driver, that is, z∗i � (1, 0, 0), the commuter’s utility is

u0i,m � v̄0i,m +V−i,m− −V−i, (9)

iii. If the commuter is allocated into time slot m as a ride-
sharing driver and is matched with rider e, that is, z∗i �(0, 1, 0) and z∗e � (0, 0, 1), the commuter’s utility is

u1i,m � v̄1i,m + v−1e,m +V−ie,m− −V−i, (10)

iv. If the commuter is allocated into time slot m as a rider
and is matched with ridesharing driver f, that is, z∗i �(0, 0, 1) and z∗f � (0, 1, 0), the commuter’s utility is

u−1i,m � v̄1f ,m + v−1i,m +V−fi,m− −V−i: (11)

Proof. See Online Appendix C. w

Lemma 2. Commuters cannot improve their utility by
misreporting their request, whether they are designated as a
solo driver, a ridesharing driver, or a rider when they act
truthfully.

Proof. See Online Appendix D. w

Lemma 3. Commuters cannot improve their utility by
misreporting their request if their truthful request would be
rejected.

Proof. See Online Appendix E. w

We are now ready to present the first main result.

Proposition 3. The second price policy q+ obtained from
Algorithm 1 satisfies IC in Definition 4.

Proof. Lemmas 2 and 3 list all four possibilities for a
commuter’s request: rejected or accepted as a rider/
ridesharing driver/solo driver. Lemma 3 states that
commuters cannot improve their utility if by truthful
reporting their request would be rejected. Lemma 2
asserts the same is true if their request would be ac-
cepted. Thus, under no circumstance they can do bet-
ter by misreporting. w

Our next main result asserts that, under the sec-
ond price policy, once a commuter’s role and time
slot are fixed, the payment is also fixed. This fea-
ture is important because it ensures fairness; that
is, nobody should be discriminated based on per-
sonal preferences. We formally state the result as
follows.

Proposition 4. Under the second price policy (Algorithm
1), different commuters pay exactly the same price as long
as their role and time slot are the same.

Proof. See Online Appendix F. w

A few remarks about Proposition 4 are in order
here. First, it not only guarantees fairness, but also fa-
cilitates computation. In order to compute the bonus
for a winner i ∈ Ĩ , Algorithm 1 solves Problem (4) ex-
cluding i to evaluate V−i. With Proposition 4, we only
need to do this computation once for each role and
time slot, which is a significant savings when the
number of commuters is large. Second, Proposition 4
suggests that, when ridesharing is prohibited (i.e., all
commuters solo drive), A-PASS under the second
price policy is degraded to a time-dependent tolling
scheme, much like what is proposed by Vickrey
(1969). Finally, although alternative auction-based
pricing schemes exist (Wada and Akamatsu 2013,
Wang et al. 2018), none is demonstrated to satisfy this
desired property.

6. Implementation Issues
The second price policy presented in the previous
section encourages truthful reporting with a bonus.
This could lead to large deficits, however. It is well
known that, in a two-sided market such as consid-
ered herein, maximizing social welfare (i.e., optimal
matching), ensuring truthful reporting, and balanc-
ing the budget cannot be achieved simultaneously
(Myerson and Satterthwaite 1983). In Section 6.1, we
propose a practical remedy to address the deficit
problem. Section 6.2 shows A-PASS may be imple-
mented as a pricing tool.
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6.1. Deficit Control by a Budget
Balance Constraint

Our idea is to trade social welfare for profit. To this
end, note that the potential deficit comes from the
need to compensate the two parties involved in ride-
sharing, that is, drivers and riders. Should we elimi-
nate ridesharing altogether, A-PASS is reduced to a
permit auction system, which can never yield a deficit.
Let us define the number of ridesharing pairs as E,
called the matching control. The feasible range of E is
[0, I=2] because there are no more than I=2 matched
pairs with I commuters. Thus, a simple search in the
feasible range yields an E∗ that achieves the desired
trade-off between profit and social welfare. For each
given matching control E, the controlled trilateral
matching problem can be reformulated as follows:

ControledTMP

max
∑
i∈I

∑
m∈M

v0i,mxi,m +∑
i∈I

∑
j∈I

∑
m∈M

v−1j,m − pi
( )

yi,j,m

(12a)

subject to :
(4b) − (4m), (12b)

∑
i∈I

z−1i ≤ E: (12c)

Because of the extra constraint (12c), Problem (12)
always generates social welfare equal to or lower than
that of Problem (5). Yet the extra constraint changes
little the analytical property of the problem.

Proposition 5. If E is an integer, the coefficient matrix of
Constraints (12b) and (12c) satisfies total unimodularity.

Proof. See Online Appendix G. w

This result asserts that the controlled TMP can
also be solved by its linear relaxation. As E increases
from zero to I=2, it is clear that both the social wel-
fare (V) and the total system throughput (Z) increase
monotonically. The implication for the profit (W) is
less clear. We postulate that the relationship be-
tween W and E may be roughly depicted as a con-
cave function illustrated in Figure 2. For a small E,
the revenue generated from selling seats to riders is
likely more than what is needed to keep them hon-
est. This is because, when available seats are scarce,
the competition for them would be strong enough to
hold the trading price at a high level. As more seats
become available (larger E), the profit keeps rising
initially. When the decreasing price is finally unable
to offset the loss from the need to compensate an
increasing number of commuters, the profit peaks at
E∗
1 in Figure 2. The exact location of E∗ likely de-

pends on inputs. The profit may never peak within
the feasible range or peak early and plummet to the

negative territory before reaching I=2 (E∗
2 marks the

point at which the profit reaches zero).
In reality, the commuter requests received by

A-PASS, including the number of requests and the in-
formation contained in each request, may vary from
day to day. Yet the matching cannot be frequently ad-
justed according to the requests. Doing so implies
commuters can influence the pricing policy itself by
changing their requests, leading to a violation of
truthful reporting.

Algorithm 2 (Matching Control Optimization Under
Stochastic Demand)

1: Input: Distribution of all demand parameters:
(FI,Fλ,Fp,Fμ,Fb,Ft).

2:Output:Optimal matching control: E∗.
3: Set the upper bound for E: Calculate the maxi-

mum possible values for E as Emax � F−1I (0:99).
4: Sample demand: Set the sample size S.
5:Main iteration:
6: for e � 0 : Emax

2 do
7: for every s � 1 : S do
8: Draw a random demandNs from FI.
9: Generate a sample of Ns from each of the four

distributions Fλ,Fp,Fμ,Fb,Ft.
10: Set E � e and solve the TMP (12) to get Ĩ .
11: Determine q+ using Algorithm 1.
12: Set the profit We,s using Equation (8) and the

throughput Ze,s using Equation (6).
13: end for
14: SetWe � 1

S
∑S

s�1We,s and Ze � 1
S
∑S

s�1Ze,s.
15: end for
16: E∗

W � arg max We, ∀e � 0, ⋯ , Emax
2

{ }
and

E∗
Z � arg max Ze, ∀e � 0, ⋯ , Emax

2

{ }
.

To account for the stochasticity in the demand pro-
cess, we assume that A-PASS has access to distribution
information about the key parameters. Such information

Figure 2. (Color online) Illustration of the Relation Between
the Matching Control E, the Profit, and the System
Throughput

Note. E∗
1 maximizes the profit and E∗

2 maximizes the throughput
while balancing the budget.

Li, Nie, and Liu: A-PASS
Transportation Science, Articles in Advance, pp. 1–16, © 2022 INFORMS 9



may be collected gradually from the bidding process
itself. Specifically, let FI,Fλ,Fp,Fμ, Fb, and Ft be, respec-
tively, the distribution function for the number of com-
muters, the MWTP for a permit, the desired price for
sharing a seat, the MWTP for a ride, the cost of schedule
displacement, and the preferred arrival time. With such
information, A-PASS can find the matching control that
is optimal in a stochastic sense. The simplest implemen-
tation is to locate the matching control that delivers
the best “expected” performance for a random sample
drawn from the distributions. Algorithm 2 details this
procedure.

6.2. A-PASS as a Pricing Tool
Under A-PASS, commuters not only have to acquire
permit prior to travel, theymust also accept the role as-
signed by the platform, including with whom to share
the trip. Such an overly restrictive arrangement could
face many practical challenges. However, A-PASS can
be simply used as a tool to price the access to the bottle-
neck according to the ridesharing role. In such an ap-
plication of A-PASS, the platform still needs to know
the distributional information about the preferences
of the travelers, which again may be collected from a
bidding process. Thus, the platform still organizes the
auction but would not provide explicit matching re-
sults. Rather, it only announces the price based on
the role and access time. Thanks to Proposition 4, this
price is determined solely by the role and access time,
independent of the solution to the trilateral matching
problem.

Algorithm 3 (Generate a Time- and Role-Specific Pric-
ing Policy)

1: Input: Distribution of travelers’ preferences:
(FI,Fλ,Fp,Fμ,Fb,Ft), and E∗.

2: Output: Expected pricing policy Q � {Qm,k},
where Qm,k represents the price for time slot m ∈
T and role k ∈K.

3: Sample demand: Set the sample size S.
4:Main iteration:
5: SetQm,k � 0, ∀m, k.
6: for every s � 1 : S do
7: Draw a random demandNs from FI.
8: Generate a sample of Ns from each of the four

distributions Fλ,Fp,Fμ,Fb,Ft.
9: Solve the TMP (12) to get Ĩ and determine q+s

using Algorithm 1.
10: Set qsm,k as the price for time slot m and role k

based on q+s .
11: SetQm,k �Qm,k + qsm,k.
12: end for
13: SetQm,k �Qm,k=S, ∀m, k.

Supposing that (FI,Fλ,Fp,Fμ,Fb,Ft) (the distribution
of the parameters that define travelers’ preferences)

is given, a time- and role-specific pricing policy may
be set using Algorithm 3. For each random sample
drawn from the distributions, a TMP is solved, and a
second price policy is generated. However, the price
information is stored and averaged over the sample
only for each time slot and role.

To apply such a pricing scheme, one does not have
to worry about implementing the detailed matching
results at all. Instead, it suffices to announce the price
one has to pay at a given access time in a given role.
For example, the policy may dictate that between 8:00
a.m. and 8:05 a.m., a solo driver would pay $10 for the
permit, a ridesharing driver would receive $4, and a
ridesharing rider would pay $15. With this informa-
tion, there is no need to explicitly acquire a permit pri-
or and commuters are left with the decision to find a
ridesharing partner (or not) assisted by and executed
through the platform.

7. Numerical Experiments
In this section, we first illustrate the trilateral match-
ing and pricing schemes of A-PASS using a small ex-
ample. Then, a large-scale simulation experiment is
conducted. The simulation results highlight the trade-
off between the system throughput and profit of
A-PASS. All numerical results are obtained on a lap-
top with Inter(R) E5-1620 v4 CPU at 3.50 GHz and 32
G RAM. The TMP is solved using intlinprog solver in
Gurobi.

7.1. Illustrative Example
Consider a bottleneck with a discrete capacity c � 1.
All travel occurs within the time window T � 0, 2[ ]
and the set of discrete departure time intervals
M � {0, 1}. The schedule deviation function is
�i,m � |ti −m| . Thus, a commuter passing through the
bottleneck at m � 1 should have a displacement of one
time interval. Suppose A-PASS only receives requests
from four commuters as detailed in Table 1.

We first consider the case in which all commuters
report truthfully. Commuter 1’s bidding price as a
solo driver is v̄01,0 � λ̄1 − b̄1�̄1,0 � 5− 2 × |0− 0| � 5 and
v̄01,1 � λ̄1 − b̄1�̄1,1 � 5− 2 × |0− 1| � 3. Because the de-
sired ridesharing price is p̄1 � 4, the truthful bidding
price as a ridesharing driver is v̄11,0 � v̄01,1 − p̄1 � 5− 4
� 1 and v̄11,1 � v̄01,1 − p̄1 � 3− 4 � −1. As a rider the com-
muter is willing to pay v̄−11,0 � μ̄1 − b̄1�̄1,0 � 14− 2
× |0− 0| � 14 and v̄−11,1 � μ̄1 − b̄1�̄1,1 � 14− 2 × |0− 1|
� 12. The valuation of other commuters can be com-
puted similarly and are omitted here for brevity.

Solving Problem (4) yields social welfare V � 29,
and the permit allocation and sharing decisions are
(i) commuter 2 as a ridesharing driver is matched
with commuter 1 as a rider, and they are both allo-
cated in the first time slot, and (ii) commuter 3 as a
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ridesharing driver is matched commuter 4 as a rider,
and they are both allocated in the second time slot.
When commuter 1 is removed, the social welfare is
V−1 � 21. According to Algorithm 1, thus, the bonus
is ρ̄+

1 � V −V−1 � 8, and so the commuter pays
q̄+1 � v̄−11,0 − ρ̄+

1 � 14− 8 � 6 for the ride. The utility
equals the bonus, that is, eight. The results associat-
ed with different reported valuations are summa-
rized in Table 2.

Suppose now commuter 1 tries to lower the
MWTP for a seat from μ̄1 � 14 to μ1 � 10 (row 4 in
Table 2). With this request, commuter 1 is a rideshar-
ing driver instead of a rider. This reduces the social
welfare by four, which, in turn, reduces the bonus
accordingly as computed by the second price policy.
Eventually, the commuter is worse off with a posi-
tive utility of four compared with eight when report-
ing truthfully.

If commuter 1 attempts to misrepresent the sensi-
tivity to schedule displacement as one instead of two
(row 5 in Table 2), commuter 1 is still a rider but is
moved to the second time slot. In this case, both the
social welfare and the bonus increase by one. The
payment is reduced to four, but the utility remains
at eight because their true valuation is down from 14
to 12.

If commuter 1 overstates the valuation of both
MWTP for a permit and the price of a shared ride
(i.e., commuter 1 tries to use aggressive seat pricing
to gain the best time slot; row 6 in Table 2), commuter
1 becomes a solo driver in the second time slot. Com-
muter 1 ends up with a utility of one, the lowest of all
strategies.

If commuter 1 attempts to misrepresent the desired
arrival time as one (row 7 in Table 2), commuter 1 will
still be a rider and is assigned to the second time slot.
Thus, the consequence would be the same as if com-
muter 1 misreports the sensitivity to schedule dis-
placement as one.

This analysis is not exhaustive but clearly illus-
trates why misreporting is not going to help anyone
under the second price policy. However, this policy
is expensive to implement. The reader can verify
that, when all commuters truthfully report, the sec-
ond price bonuses for commuters 1–4 are 8, 7, 11,
and 9, respectively. This leads to a profit of A-PASS
at V −∑

i∈Ĩ ρ
+
i � 29− 8− 7− 11− 9 � −6.

As explained in Section 5.2, we can eliminate deficit
by implementing a matching control. If we set E � 1
and solve Problem (12), the optimal permit allocation
and sharing decisions are (i) commuter 3 as a ride-
sharing driver matched with commuter 2, and they
are both assigned to the first time slot; (ii) commuter 1
is assigned to the second time slot as a solo driver;
and (iii) commuter 2’s request is rejected. In this case,
the social welfare decreases from 28 to 22, but the bo-
nus required for truthful reporting is reduced to one,
four, and two for commuters 1, 3, and 4, respectively.
Consequently, the profit of A-PASS increases from −6
to 15.

7.2. Simulation Experiment
In this experiment, we evaluate the performance of
A-PASS from the perspective of both the commuters
and the system. For commuters, the performance met-
rics include the payment under the second price poli-
cy and the utility. The system performance metrics are
the profit W and the throughput Z. Unless otherwise
specified, we consider a bottleneck with a capacity c �
4 and an analysis period from zero to T � 6. The de-
sired arrival time is set to t∗ � 0 for all commuters in
order to mimic the situation in rush hour when the
time to pass the bottleneck is largely driven by the
start time at work. All four parameters in the request
are assumed to follow a normal distribution. Specifi-
cally, Fλ �N(10,1), Fμ �N(25,2), Fb �N(1:5, 0:5) and
Fp ~N(6, 1). By default, the sample size S � 100, and

Table 1. Commuter Requests in the Illustrative Example

Notation
Truthful reporting Commuter 1 Misreporting

Commuter 1 Commuter 2 Commuter 3 Commuter 4 Case 1 Case 2 Case 3 Case 4

λi=λ̄i 5 5 6 4 5 5 14 5
μi=μ̄ i 14 8 12 15 10 14 14 14
bi=b̄i 2 3 1 2 2 1 2 2
pi=p̄i 4 6 2 5 4 4 10 4
ti=t̄ i 0 0 0 0 0 0 0 1

Table 2. Commuter 1’s Utility Associated with Different
Bidding Strategies

Reported
valuation Role

Time
slot

Second pricing policy

λ1,μ1,b1,p1, t1
( ) (z0,∗1 , z1,∗1 , z−1,∗1 ) m V V−1 ρ+

1 vk1,m q+1 v̄k1,m uk1,m

5, 14, 2, 4, 0( ) 0, 0, 1( ) 0 29 21 8 14 6 14 8
5, 10, 2, 4, 0( ) 0, 1, 0( ) 0 25 21 4 1 −3 1 4
5, 14, 1, 4, 0( ) 0, 0, 1( ) 1 30 21 9 13 4 12 8
14,14, 2, 10, 0( ) 1, 0, 0( ) 1 31 21 10 12 2 3 1
5, 14, 2, 4, 1( ) 0, 0, 1( ) 1 31 21 10 14 4 12 8
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the average performance metrics are reported. We fix
the number of commuters I for simplicity. In the
benchmark case, I � 30, and the length of each discrete
interval is set to one. Hence, M � [0, 1, 2, 3, 4, 5], and
C � 4.

We first consider the case when E � 0, which effec-
tively bans permit sharing and reduces the system to
a permit auction system. Figure 3 reports the payment
and utility of commuters under second price policy
from a single run. Figure 3(a) reveals a couple of inter-
esting patterns. First, as expected, the payment for a
permit decreases as the time slot deviates further
away from the arrival time desired by everyone (i.e., t
� 0). The furthest time slot is worthless because the
payment for this time slot is close to zero. Second and
more important, all commuters allocated into the
same time slot are charged exactly the same price for

the permit, which verifies that the permit auction is ef-
fectively equivalent to an anonymous step tolling
scheme as asserted by Proposition 4.

Figure 3(b) shows that, in general, a commuter’s
utility increases under second pricing when the com-
muter is allocated to a time slot further away from t∗.
Not all commuters in the same slot have the same
utility because of heterogeneity. In this case, those
traveling closer to their desired time are worse off
likely because of the intensive competition for t∗.

We next set the matching control E � 10. Figure 4
shows how payments aggregated for different roles
from a single run vary over different time slots. In the
plot, the location of a circle represents time slot (x)
and payment (y). Its color and size indicate the role
and the number of a commuter at the location, respec-
tively. First, we note that commuters serving the same
role in the same slot make exactly the same payment.
For example, all four riders in time slot 0 pay the
same price 21.865. Again, this confirms the assertion
in Proposition 4. Second, for each role, the payment
decreases as the time slot moves away from t∗, consis-
tent with the finding from Figure 3(a). Third, in gener-
al, a rider pays the highest price, and a ridesharing
driver pays the lowest. This is expected because the ri-
desharing driver has to cover the vehicle operating
cost as well as the inconvenience cost associated with
ride sharing. Finally, solo drivers are pushed away
from t∗. Also noted in Liu and Li (2017), this phenome-
non results from the fact that the willingness to pay of
a solo driver for a highly desired slot is likely lower
than that of a pair of two commuters. Hence, in gener-
al, solo drivers tend to concede more competitive slots
to ridesharing partners.

Figure 4. (Color online) Payment Aggregated for Different
Roles from a Single Run
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Figure 3. (Color online) Payment and Utility of Commuters Under the Second Price Policy
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Figure 5 compares the average utility of each role
in the different time slots. The results confirm that,
on average, the utility of each role increases with
schedule displacement, consistent with the finding
from Figure 3(b). Furthermore, when they are
placed in the same slot, solo drivers have signifi-
cantly lower utility compared with ridesharing
drivers and riders. This finding is strong evidence
that A-PASS promotes ride sharing. The utility of
ridesharing drivers and riders is comparable, but
the riders consistently outperform the drivers with
a small margin.

We next examine how the matching control E af-
fects average system and commuter performance in-
dexes. We set c � 2 and 4. When c equals two, the
maximum system throughput is 2 × 6 × 2 � 24 (every-
one participates in ridesharing). For c � 4, the maxi-
mum throughput is 48. For each capacity level, three
different demand levels are considered: for c � 2, we
set I � 10, 20, 30, and for c � 4, I � 20, 40, 60. In both
cases, the lowest demand level corresponds to an un-
congested state because I is far less than the maximum
throughput. On the contrary, the highest demand lev-
el leads to intense congestion because I is larger than
the maximum throughput.

Figure 6 reports the results in all cases. We start
from the case for c � 2, that is, the left three plots in
the figure. Figure 6(a) shows that, for the low- and
medium-demand levels (I � 10 and 20), the profit first
increases and then decreases with E as predicted in
Figure 2. When I � 10, the profit peaks at E � 4, and
when I � 20, it peaks at seven. In both cases, reaching

a perfect match (i.e., every commuter is matched with
a ridesharing partner) leads to a deficit. For the high-
demand level I � 30, however, the profit keeps in-
creasing with E until it peaks at E � 12. As expected,
the system throughput increases with E except for the
lowest demand level (Figure 6(c)). In that case, the de-
mand is so low relative to the capacity that everyone
can be accommodated without any ridesharing. For I
� 20 and 30, the throughput is maximized when E is
increased to the level that maximizes the profit. This is
welcoming news because both outcomes are desired.
From the perspective of A-PASS, such a matching
control is optimal. Figure 6(e) shows that commuters
benefit from ridesharing in general: their average utili-
ty increases with E. Another interesting—though not
surprising—finding from this plot is that congestion
hurts commuters’ utility. When I increases from 10 to
30, the average utility drops almost 90%. The results
for c� 4 (the right column in Figure 6) are very
similar.

Overall, Figure 6 offers two important takeaways.
First, operating with a deficit seems a rare event in
A-PASS regardless of the setting. It occurs only three
times in more than 90 tests reported in Figure 6. In all
three incidents, the system faced a low demand rela-
tive to its capacity and implemented a loose matching
control, leading to a perfect match. These features can
be easily identified and used to guide the operation of
A-PASS. Second, A-PASS strongly promotes rideshar-
ing through the trilateral matching scheme. As the
matching control is relaxed, all stakeholders are better
off in general: the operator receives greater profits, the
commuters enjoy higher utility, and the society bene-
fits from more efficient utilization of infrastructure.

Finally, Table 3 reports the average CPU times re-
quired to solve the TMP exactly (with a gap of zero)
when the input parameters are closer to those from
real-world applications. Here, we consider 20 time
slots, which could cover roughly a two-hour analysis
period if each lot is five minutes long. The capacity of
the bottleneck ranges from 10 to 25 vehicles per slot,
and the total number of commuters ranges from 600
to 1,000. The results show that the computation time
rises at a relatively mild pace with the number of com-
muters and the bottleneck capacity. In the largest case
tested, it takes a modest personal computer about 100
seconds to solve one instance. In order to set the sec-
ond price policy, variants of the instance must be
solved 20 × 3 � 60 times, which brings the total com-
putation time to almost two hours. Yet this is likely a
pessimistic estimation given many of these variants
are very similar and, hence, can potentially be solved
from a warm start.

Figure 5. (Color online) Average Utility of Different Roles as
a Function of Time Slot

0 1 2 3 4 5

Time Slot

4

5

6

7

8

9

10

11

12

13

14

A
v
er

ag
e 

u
ti

li
ty

Rider

Solo driver

Ride-sharing driver

Li, Nie, and Liu: A-PASS
Transportation Science, Articles in Advance, pp. 1–16, © 2022 INFORMS 13



Figure 6. (Color online) Average Performance Indexes vs. Matching Control Under Different Congestion Levels (Measured by
the Ratio Between the Bottleneck Capacity C and the Number of Commuters I)
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8. Conclusions
In this study, we devised and analyzed a quantity-
based travel demand management system aiming to
promote ridesharing. The system sells permits to ac-
cess a road facility (conceptualized as a bottleneck)
through an auction but encourages travelers to share
the permits with each other using ridesharing. The
permit is classified according to access time, and
the travelers may be assigned by the system one of the
three roles: solo driver, rideshare driver, or rider. At
the core of this A-PASS is a TMP that optimally
matches permits, drivers, and riders. We first formu-
lated the TMP as an integer program and then proved
it can be reduced to an equivalent linear program
thanks to the total unimodularity of the constraint
structure. A pricing policy based on the classical VCG
mechanism is proposed to determine the payment for
each traveler. Although this policy guarantees all par-
ticipants of the auction truthfully report their private
information, it may not balance the budget. As a rem-
edy, we propose a revised pricing policy that allows
the operator of A-PASS to eliminate any deficit by
controlling the number of shared rides. We also dem-
onstrate A-PASS can be simply used as a tool to price
the facility based on the access time and ridesharing
role. Main findings from numerical experiments are
summarized as follows:

• Consistent with the theoretical result, the experi-
ments show the payment of a commuter depends only
on the commuter’s role and the access time.

•A traveler’s utility increases as the access time devi-
ates further away from the access time desired by ev-
eryone regardless of the role. Given the same access
time, solo drivers have significantly lower utility com-
pared with ridesharing drivers and riders.

• A-PASS does not usually operate with a deficit
even with the VCG pricing policy. Yet a deficit may
arise when the system faces a low demand relative to its
capacity and the matching is not properly controlled.

• The trilateral matching scheme strongly promotes
ridesharing. As sharing increases, all stakeholders are
better off: the operator receives greater profits, the com-
muters enjoy higher utility, and society benefits from
more efficient utilization of infrastructure.

The work presented in this paper can be extended
in several directions. The obvious next step is to con-
sider a more general representation of the transportation
system than a single bottleneck. In a network setting, the
proposed framework has to be extended to allow the valu-
ation and payment of a traveler to depend on route
choice, departure time, and ridesharing role. Wada and
Akamatsu (2013) implement and analyze a tradeable net-
work permit system in a network setting in which the
permits are distributed through an auction scheme. Given
that their system is also based on the bottleneck model, it
may be used as a prototype to develop a networked
A-PASS. Also, in the current setting, ridesharing can only
occur between a driver and a rider. A future study can al-
low a driver to take multiple riders. Finally, other
schemes, such as tradable credits, may be used to replace
the auction in the A-PASS to distribute permits.
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Endnotes
1 For example, Uber claims that, by 2016, 20% of its trips were
shared rides on UberPool: https://techcrunch.com/2016/05/10/
uber-says-that-20-of-its-rides-globally-are-now-on-uber-pool/.
2 Although empirical evidence suggests most commuters prefer an
early over late arrival (see, e.g., Small 1982), here we assume, for
simplicity, the value of a displacement does not depend on whether
it leads to an early or late arrival. We note that all analytical results
presented herein can be readily extended to accommodate the case
of asymmetric schedule displacement.
3 Because the entire trip is subject to no congestion, the time passing
the bottleneck dictates the schedule displacement (i.e., the discrep-
ancy between the desired and actual arrival time).
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