
Transportation Research Part B 123 (2019) 64–87 

Contents lists available at ScienceDirect 

Transportation Research Part B 

journal homepage: www.elsevier.com/locate/trb 

A multi-stage stochastic programming model for relief 

distribution considering the state of road network 

Shaolong Hu 

a , b , Chuanfeng Han 

a , Zhijie Sasha Dong 

b , Lingpeng Meng 

c , ∗

a School of Economics and Management, Tongji University, 1239 Siping Road, Shanghai 20 0 092, China 
b Texas State University, 601 University Drive, San Marcos, TX 78666, United States 
c China Institute of FTZ Supply Chain, Shanghai Maritime University, 1550 Haigang Avenue, Shanghai 201306, China 

a r t i c l e i n f o 

Article history: 

Received 4 June 2018 

Revised 13 February 2019 

Accepted 19 March 2019 

Keywords: 

Emergency logistics 

Transportation 

Uncertain and dynamic road capacity 

Multi-stage stochastic programming 

Progressive hedging algorithm 

a b s t r a c t 

As an important aspect in disaster operations management, relief distribution has been 

challenged by lots of factors, such as unpredictable occurrence time, intensity and loca- 

tion of secondary disasters (e.g. aftershocks and landslides, which usually occur after an 

earthquake), and availability of vehicles. A multi-stage stochastic programming model is 

developed for disaster relief distribution with consideration of multiple types of vehicles, 

fluctuation of rental, and the state of road network. The state of road network is charac- 

terized using uncertain and dynamic road capacity. The scenario tree is employed to rep- 

resent the uncertain and dynamic road capacity, and demonstrate the decision process of 

relief distribution. A progressive hedging algorithm (PHA) is proposed for solving the pro- 

posed model in large-scale size. Based on a real-world case of Yaan earthquake in China, 

numerical experiments are presented to study the applicability of the proposed model and 

demonstrate the effectiveness of the proposed PHA. Useful managerial insights are pro- 

vided by conducting numerical analysis. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Large amounts of relief supplies, such as water, tents, medical supplies, and fuel, are required in the aftermath of a

major disaster. Satisfying victims’ needs is crucial to the success of disaster relief operations, as a lack of relief supplies may

cause suffering and life loss for victims ( Ahmadi et al., 2015 ). Relief supplies are usually insufficient due to damages to local

inventory and markets. Therefore, procuring relief supplies from distant locations, and transporting them to the disaster-

affected areas within a given time frame is of great importance. The aim of this paper is to propose an efficient distribution

plan to provide prompt responses to victims’ demand for relief supplies. 

The relief distribution plan is a major component in disaster operations management ( Balcik et al., 2010 ). Decisions

include the design of the emergency supply network ( Sheu and Pan, 2014; Meng et al., 2017 ), locating distribution centers

( Zokaee et al., 2016 ), vehicle routing ( Rennemo et al., 2014 ) and last mile distribution ( Lu et al., 2016; Zhou et al., 2017 ).

These work usually assume that no limitation exists in the availability of vehicles or the state of road network. However,

the distribution of relief supplies is highly dependent on the capacity of available vehicle fleets. Moreover, relief distribution

decisions may not work due to a collapsed network with totally or partially blocked roads. It is useless to store sufficient
∗ Corresponding author. 

E-mail address: lmeng@tongji.edu.cn (L. Meng). 

https://doi.org/10.1016/j.trb.2019.03.014 

0191-2615/© 2019 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.trb.2019.03.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/trb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trb.2019.03.014&domain=pdf
mailto:lmeng@tongji.edu.cn
https://doi.org/10.1016/j.trb.2019.03.014


S. Hu, C. Han and Z.S. Dong et al. / Transportation Research Part B 123 (2019) 64–87 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

relief supplies if they cannot be effectively delivered to the affected location. Thus, it is essential to integrate fleet decisions

and the state of road network into relief distribution. 

There are two challenges in relief distribution of current common disaster practice. (1) The number of vehicles and costs

for using them vary. We use “vehicles” in this paper to represent all land and air vehicles, such as airplanes, trains, trucks,

and helicopters. Relief agencies usually do not own or operate vehicle fleets, and typically rent vehicles and drivers for

delivering relief supplies ( Balcik et al., 2010 ). Vehicle are usually insufficient when there is a sudden increase in the need

for delivering supplies in post-disaster situations, which will increase the rental cost of vehicles ( Balcik et al., 2010 ). (2) The

state of road network also vary. The occurrence time, intensity and location of secondary disasters are unpredictable, which

may cause variation of road capacity within the affected region (the detailed explanations are shown in the next paragraph).

It may make the use of vehicles challenging. Motivated by the significance of developing relief distribution plans, we study

a relief distribution problem with consideration of multiple types of vehicles, fluctuation of rental, and the state of road

network to quickly respond to natural disasters. 

When a major earthquake occurs, several segments of roads are damaged in a local network and would decrease road

capacity. For instance, assuming a road has a capacity of passing 100 vehicles per hour. Depending on the degree of damage

to the road, the capacity could reduce to 50, 30 or 10 per hour. Obviously, the corresponding capacity equals to zero only

if a road is disrupted. For quicker casualty transfer and relief supply delivery, road recovery should be performed as soon

as possible to improve the road capacity. However, secondary disasters might continue to damage recovered or recover-

ing segments of the road network. Secondary disasters, such as aftershocks, mountain collapse, landslides, debris flows, and

flooding caused by dam breaching, usually follow major earthquakes ( Zhang et al., 2012 ), especially in mountainous areas. 64

and 104 major aftershocks, ranging in magnitude from 4.0 to 6.1, were recorded within 72 h of the Wenchuan earthquake

( China Earthquake Administration, 2008 ). The road capacity might become uncertain and dynamic because the intensity

and location of secondary disaster is unpredictable and secondary disaster will be continually occur. The uncertainty and

dynamic of road network capacity increase the complexity of relief distribution. In this study, a multi-stage stochastic pro-

gramming approach is employed to formulate the problem. More specific explanations about uncertain and dynamic road

network capacity and decisions of multi-stage relief distribution are depicted in Section 3.1 . 

Relief supplies are transported to the disaster region and stored in selected temporary warehouses. Then, the “last mile

distribution” has to be carried out according to the differential demands of disaster-affected locations. Motivated by the

relief practice, we consider relief distribution as a transshipment problem. The transshipment problem is formulated as a

multi-stage stochastic programming model with consideration of multiple types of vehicles, fluctuation of vehicle rental cost,

and the state of road network. A scenario-based approach is applied to represent the uncertain and dynamic road capacity,

wherein a scenario tree is employed to demonstrate the decision process of multi-stage relief distribution. As the multi-stage

stochastic programming models are difficult to be solved and time-consuming even for small-sized instances, we propose

a progressive hedging algorithm for solving the proposed model. Based on real-world case data, numerical experiments are

performed to study the applicability of our model and explore its managerial implications for disaster relief distribution.

An appropriate distribution plan can be especially beneficial in terms of saving costs, utilizing road network, and satisfying

victims’ needs. 

This paper is organized as follows: Section 2 presents related studies in multiple types of vehicles, the state of road net-

work and the progressive hedging algorithm. Section 3 develops a multi-stage stochastic programming model. Section 4 de-

scribes the implementation of the progressive hedging algorithm. Section 5 describes a case study, while in addition, findings

are observed from the numerical results, and managerial implications are summarized. Section 6 provides conclusions and

summary. 

2. Literature review 

(1) Multiple types of vehicles 

Vehicles are used to transport personnel, aid items, and materials. Without vehicles, there is no aid ( Wassenhove and

Martinez, 2012 ). To make relief supplies distribution decisions more practical, vehicle capacity constraints ( Mete and Zabin-

sky, 2010; Sawik, 2014 ) and vehicle routing problem ( Dong and Turnquist, 2015; Ahmadi et al., 2015; Dong, 2015 ) are

commonly considered in the literature. These work focused on truck schedules to deliver supplies, and have ignored the

issue of road availability in the relief distribution. For instance, trucks cannot be used if road links have been disrupted.

Ferrer et al. (2018) addressed a vehicle schedule problem in last mile distribution. Although three types of trucks with

different capacity and speed are considered, in essence, they considered one type of vehicle. 

Considering multiple ways of accessing affected locations is beneficial to increase the efficiency of relief distribution.

For instance, helicopters are usually used for delivering relief supplies and injured people if areas are not accessible due to

disruption of links ( Barbaroso ̆glu et al., 20 02; Wassenhove, 20 06 ). Liu et al. (2018) studied a multi-commodity, multi-period

distribution problem that considers helicopters for quick delivering relief commodities and injured people. To the best of our

knowledge, there are few works that considered the use of multiple types of vehicles. Alem et al. (2016) developed a two-

stage stochastic network flow model for decisions on the fleet size of multiple types of vehicles over a dynamic multiperiod

horizon. Moreno et al. (2016) developed a two stochastic mixed-integer programming model to integrate and coordinate

facility location, transportation, and fleet sizing decisions. These two work all considered trucks, boats, and helicopters to
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deliver relief supplies. However, they ignored fluctuation of rental for vehicles. The sudden surge of demand may inflate the

rental costs of available vehicles ( Balcik et al., 2010 ), which might affect on the related costs and transportation decisions. 

(2) The state of road network 

The state of road network is usually considered as a stochastic element in the relief distribution models. Most of the

research associated the cost, distance or time of transportation to indirectly reflect the state of road network. Balcik and

Beamon (2008) associated the travel costs on arcs with different scenarios. According to their approach, the unit transporta-

tion cost on the arcs can be assigned a large number when they are damaged or cannot be used by a specific vehicle type.

Baskaya et al. (2017) used different route distance between relief centers and affected locations to reveal the disruption

levels of the network. Tofighi et al. (2016) , and Elçi and Noyan (2018) presented the state of the road network through

different transportation time in different disaster scenarios. The disruption levels are reflected by transportation time. Their

work reveals that depending on the disruption levels, longer transportation time is needed than usual due to the decrease

of arc capacity. In other words, smaller number of vehicles can be traversed on an arc than usual in the same time period

when arc capacity decreases. 

Alem et al. (2016), Moreno et al. (2016) , and Ferrer et al. (2018) used binary variables to describe the state of arcs in

the relief distribution problem. In their approach, if an arc cannot be used by a specific vehicle type, the parameter of

the state of arcs equals zero, otherwise, it equals one. The vehicle-road compatibility (i.e., binary variables) is reflected in

a set of scenarios. It is unpractical for just consider states of arcs as non-disruption and disruption. To the best of our

knowledge, there is one work which used integer variables to describe the state of arcs ( Rennemo et al., 2014 ). According to

their approach, arc capacity denoted the maximum number of vehicles that can traverse on an arc. The capacity equals to

zero only if an arc is disrupted. It is apparent that integer variables can better represent the various state of arcs than binary

variables. In sum, the existing work that employ integer variables to describe the state of arcs appear to be scarce. Moreover,

the existing work ignored the variation of road capacity over time. As discussed in Introduction, the road capacity might

become dynamic because of secondary disaster will be continually occur. Table 1 shows the summary of most relevant work

on multiple types of vehicles and the state of road network. 

(3) Progressive hedging algorithm 

For solving large-scale problems efficiently, the progressive hedging algorithm (PHA) is adopted. Studies for progres-

sive hedging algorithm can be divided into three categories. The first category is the application of PHA in various fields

such as supply chain management ( Kim et al., 2015; Dong et al., 2018 ), health care ( Gul et al., 2015 ) and harvest planning

( Veliz et al., 2015 ). Another category is PHA enhancements through methods of adjusting penalty parameters. Listes and

Dekker (2005) discussed the sensitivity of the performances of PHA to the changes of the penalty parameter. Hvattum and

Lokketangen (2009) proposed a method for comparing the convergence rate at iterations k and k -1, increasing the penalty

parameter if the convergence rate is decreasing. The penalty parameter is decreased if the current status is closer to con-

sensus variables at iteration k -1 than at iteration k . Watson and Woodruff (2011) developed a method to adjust penalty

parameters to enhance PHA for scenario-based resource allocation problems. The third category is to integrate other algo-

rithms (e.g., grouping method, dual decomposition and sample average approximation) into PHA to efficiently solve sce-

nario specific sub-problems. Crainic et al. (2014) proposed a k -means based approach for grouping scenarios. They evaluated

these strategies in the context of stochastic network design by analyzing the performance of a new progressive hedging-

based meta-heuristic. Guo et al. (2015) presented a method for integrating the PHA and dual decomposition algorithm for

stochastic mixed-integer programs. Dong et al. (2015) integrated a sample average approximation method and PHA for joint

decision-making of shipping service capacity planning and dynamic container routing. To the best of our knowledge, the

existing studies all considered binary variables so that quadratic penalty components can be easily linearized. Moreover,

PHA for multi-stage stochastic programming models seems to be lacking. 

Here, our study aims to efficiently integrate two strategies into PHA for solving the proposed multi-stage stochastic pro-

gramming model. One strategy is to linearize the quadratic penalty components which contain the integer decision variables.

Another is the variables fixing strategy, which force binary variables equal to 1 if the value of corresponding consensus vari-

ables is larger than a threshold. The details are addressed in Section 4 . 

In summary, our work features the following contributions to the disaster relief operations literature. 

(1) A large amount of vehicles are required for delivering relief supplies due to the sudden surge of demand. The vehicles

may thus be scarce. The existing work that consider the use of multiple types of vehicles and fluctuation of rental

cost appear to be lack. Therefore, a quantity- and time interval-based rental for hiring four types of vehicles (i.e.,

airplane, train, truck and helicopter) is constructed to study its impact on relief distribution decisions. This study can

help relief agencies in making contractual agreements with carriers in the disaster preparedness stage and improve

the accuracy in determining an annual emergency budget. 

(2) In many real-world cases, the road capacity is usually uncertain and dynamic because the intensity and location of

secondary disaster are unpredictable and secondary disaster will continually occur. The existing work ignored the

variation of road capacity over time. Therefore, we analyze the impact of secondary disasters on road network ca-

pacity. The state of road network (i.e., uncertain and dynamic road capacity) is modeled through the scenario tree.
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Table 1 

Summary of most relevant work on multiple types of vehicles and the state of road network. 

Vehicle features Uncertain road network treatment Modeling 

Types Available quantity Rental cost Stoch. road capacity Stoch. cost/ 

time/distance 

Two-stage Multi-stage 

Single Multiple Fixed Variable Fixed Variable Binary Integer 

Balcik and Beamon (2008) 
√ √ 

Rennemo et al. (2014) 
√ √ √ √ 

Alem et al. (2016) 
√ √ √ √ √ 

Moreno et al. (2016) 
√ √ √ √ √ 

Tofighi et al. (2016) 
√ √ 

Baskaya et al. (2017) 
√ 

Ferrer et al. (2018) 
√ √ √ √ 

Elçi and Noyan (2018) 
√ √ 

Liu et al. (2018) 
√ √ 

This paper 
√ √ √ √ √ 
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Fig. 1. A transshipment network in relief distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Incorporating the state of road network is beneficial for improving the accuracy of decision making in relief distribu-

tion. 

(3) The existing work formulated relief distribution problems as two-stage stochastic programming models. These models 

are static in nature because of the decisions are made at one point in time. Therefore, the relief distribution problem

with consideration of uncertain and dynamic road capacity is formulated as a multi-stage stochastic programming

model. The proposed model can help relief agencies to produce plans for dynamic vehicle allocation and relief supplies

distribution. 

3. Modeling 

3.1. Problem description 

Based on disaster relief practices, a transshipment network in relief distribution can be depicted as Fig. 1 . This trans-

shipment network consists of the supply level, transshipment level, and demand level. The supply level comprises several

suppliers serving as replenishment resources. The transshipment level comprises warehouses or distribution centers. Relief 

supplies may experience multiple transshipment actions before arriving at affected locations. We consider one transship-

ment level located in the disaster-affected region. The demand level consists of affected locations with diverse needs. Relief

distribution can thus be roughly divided into two phases. The first phase is called long distance transportation. In this phase,

relief supplies are primarily transported via air and rail transportation. The next phase is local distribution, and relief sup-

plies are delivered to affected locations mainly via trucks and helicopters. As the impact of secondary disasters on road

recovery, we consider the road network capacity for delivering relief supplies to be uncertain and dynamic in the local

distribution phase. 

Considering the time required for long distance transportation and road recovery, the proposed model focuses on daily

decisions for the dynamic allocation of vehicles and distribution of relief supplies over a finite planning horizon. We con-

sider airplanes and trains for long distance transportation, and trucks and helicopters for local distribution. Inspired by

relief practices, we consider the following specific situation. For long distance transportation, large quantities of supplies

are transported to safe airports and train stations, and then, trucks are used to transport relief supplies to local ware-

houses. Relief supplies are usually collected from other provinces (that are hundreds of kilometers away) and delivered with

long distance transportation. Therefore, the difference in transport speed between airplanes and trains is considered. We

assume that an additional day is required if trains are used for transporting relief supplies. For local distribution, we con-

sider that supplies are delivered from local warehouses to several fixed points, which are easily accessible by trucks and

helicopters. 

A variety of resources is required in the affected regions. There are not only distribution of relief supplies, but also ve-

hicle flows for evacuation and rescue equipment and other operations in road network. Moreover, since road conditions

are uncertain (e.g. partially or fully damaged), the road capacity for relief distribution is usually limited. Therefore, the

number of traversable vehicles (i.e. the quantity of relief items) per time interval during post-disaster is smaller than nor-

mal situation. We introduce a scenario tree to depict the uncertain and dynamic road capacity. A sample of the scenario

tree with three stages is identified in Fig. 2 . Each stage denotes a time interval. Depending on the specific problem, a

time interval could be hours, days, or even months. As we consider daily decisions, each stage denotes one day. The sce-

nario tree comprises a number of nodes and arcs. Each node denotes a possible realization (named scenario, indexed by

s ∈ S ) of the road capacity with a specific probability. The root scenario of the tree represents the current road capacity.

The arcs denote the direction of scenarios for the next stage. A probability is associated with each arc denoting the prob-

ability of the corresponding scenario. Note that the probability of scenario s equals to the product of the probability of
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Fig. 2. A sample of the scenario tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the arcs from the root scenario to scenario s , and the sum of probabilities of scenarios at each stage is 1 ( Zanjani and

Nourelfath, 2014 ). The specific steps for estimating the road capacity of scenarios and its probability are shown in

Section 5.1 . 

In the sample scenario tree, scenario 1 is the root scenario, scenarios 2–4 belong to stage 2 and scenarios 5–10 belong to

stage 3. Fig. 2 illustrates the road capacity under scenario 5 and 6 varies based on the state of scenario 2 and the impact of

secondary disasters on the roads under scenarios 5 and 6. The same relationship exists for scenarios (1, 2, 3 and 4), (3, 7 and

8) and (4, 9 and 10). Therefore, we introduce a set of parent scenarios (indexed by ξ ( s ) ∈ �) to represent this relationship.

For instance, scenario 2 is the parent scenario of scenarios 5 and 6 where ξ (5) = 2 and ξ (6) = 2. As shown in Fig. 2 , the set

of parent scenarios � comprises 4 elements. 

We formulate the above-mentioned transshipment problem as a multi-stage stochastic programming model. The dynamic

vehicle allocation and relief supply distribution are explained as follows. In the first stage (i.e. the first day), there is usually

one scenario (e.g., scenario 1 in Fig. 2 ), and we assume that demand is 0. According to the predicted probability and the

state of road network of scenarios for subsequent stages (e.g., scenarios 2–10), locations and inventory of warehouses and

the maximal quantity of vehicles for the next stage should be determined. Then, at the beginning of next stage, depending

on the actual road capacity of scenarios (e.g., scenarios 2–4) and maximal quantity of vehicles (which is determined in the

previous stage), vehicles are allocated to deliver supplies from suppliers to warehouses, then to affected areas. Furthermore,

at the end of each stage (e.g., scenarios 2–4), the maximum quantity of vehicles for the next stage should be updated. Note

that the locations of warehouses are fixed after the first stage. 

3.2. Model formulation 

Assumptions, definitions of sets, parameters, and decision variables are given below. 

Assumptions 

(1) The long distance transportation network is unaffected by the disaster because 1) the network is relatively far away

from the disaster-affected region, and 2) warehouses are usually located at strategic locations which are accessible via

multiple routes. 

(2) Detour is not considered because multiple routes between two locations may not always exist (e.g., mountainous

areas). Helicopters are used for local distribution, or ground transportation can be carried out after damaged segments

of roads are repaired. 

(3) We assume that the demand for supplies is steady. This is because aftershocks and landslides usually damage recov-

ered or recovering segments of the roads. 

Sets and indices 

I Set of suppliers, indexed by i ∈ I . 

K Set of warehouses, indexed by k ∈ K . 

J Set of affected locations, indexed by j ∈ J . 

A Set of items types, indexed by a ∈ A . 

O Set of vehicle types (i.e. airplane and train) used for long distance transportation, indexed by o ∈ O . 

P Set of vehicle types (i.e. helicopter and truck) used for local distribution, indexed by p ∈ P . 

L Set of quantity intervals, indexed by l ∈ L . 

S Set of scenarios, indexed by s ∈ S . 

� Set of parent scenarios, indexed by ξ ( s ) ∈ �. 



70 S. Hu, C. Han and Z.S. Dong et al. / Transportation Research Part B 123 (2019) 64–87 

 

 

 

 

 

 

 

 

 

Parameters 

ϕk,j,s Capability of the road from warehouse k to affected location j under scenario s . 

ω s Probability of scenario s. 

D a,j Demand of disaster-affected location j for type a items. 

HS i,k Distance from supplier i to warehouse k . 

HW k,j Distance from warehouse k to disaster-affected location j . 

Q k,a Handling capacity of warehouse k for type a items. 

R k,a Inventory of type a items at warehouse k . 

U i,a Inventory of type a items at supplier i . 

μa Volume of type a items. 

CH a Unit handling cost for type a items. 

G a Unit penalty cost for the shortage of type a items. 

VS o,l Maximal number of type o vehicles in quantity interval l . 

VW p,l Maximal number of type p vehicles in quantity interval l . 

ES o Transport capacity of type o vehicles. 

EW p Transport capacity of type p vehicles. 

CRS o,l,s Unit cost for renting type o vehicles in quantity interval l under scenario s . 

CRW p,l,s Unit cost for renting type p vehicles in quantity interval l under scenario s . 

CTS o,a Unit transport cost for items of type a items via type o vehicles. 

CTW p,a Unit transport cost for items of type a items via type p vehicles. 

γ Number of selected warehouses. 

η The number of the first scenario at the third stage (e.g. η= 5, see Fig. 2 ). 

M Large positive number. 

Decision variables 

w k If warehouse k is selected for temporarily storing supplies, w k = 1; otherwise, w k = 0. 

xs o,l,s If type o vehicles is set to the quantity interval l under scenario s, xs o,l, s = 1; otherwise, xs o,l, s = 0. 

xw p,l,s If type p vehicles is set to the quantity interval l under scenario s, xw p,l, s = 1; otherwise, xw p,l, s = 0. 

ys i,o,l,s Number of type o vehicles used by supplier i in quantity interval l under scenario s . 

yw k,p,l,s Number of type p vehicles used by warehouse k in quantity interval l under scenario s . 

y k,j,p,s Number of type p vehicles used for delivering supplies from warehouse k to affected location j under scenario s . 

qs i,k,o,a,s Quantity of type a items delivered from supplier i to warehouse k via type o vehicles under scenario s . 

qw k,j,p,a,s Quantity of type a items delivered from warehouse k to affected location j via type p vehicles under scenario s . 

v k,a,s Quantity of type a items at warehouse k under scenario s . 

h k,a,s Additional quantity of type a items which need be handled at warehouse k under scenario s . 

z j,a,s Shortage of type a items at affected location j under scenario s . 

Based on the above-mentioned descriptions and definitions, a multi-stage stochastic programming model is formulated 

with the objectives of minimizing rental cost, transportation cost, handling cost, and penalty cost. The total expected costs

are computed with Eq. (1) . Rental cost ( rc ) is the costs of renting vehicles, as computed with Eq. (2) . Transportation cost ( tc )

is a function of unit transportation cost and delivered quantity, as computed with Eq. (3) . The temporary warehouses exist

for at most 10–30 days after disasters and are usually located at cooperating suppliers. The costs for locating temporary

warehouses are insignificant. However, in practice, with the exception of a scheduled distribution plan, the in-kind dona-

tions are delivered to disaster-affected provinces via highway transportation. There may be insufficient space and workforce

capable of storing and handling all the supplies. This imposes great challenges on local warehouses. Therefore, the model

includes handling cost ( hc ), which is a function of unit handling cost and the quantity of items that need to be handled

by an additional workforce, as computed with Eq. (4) . Penalty cost ( pc ) is a function of unit penalty cost and unsatisfied

demand, as computed with Eq. (5) . 

f = min 

∑ 

s 

ω s · ( r c s + t c s + h c s + p c s ) (1) 

r c s = 

∑ 

i,o,l 

(
ys i,o,l,s · CRS o,l,s 

)
+ 

∑ 

k,p,l 

(
yw k,p,l,s · CRW p,l,s 

)
, ∀ s (2) 

t c s = 

∑ 

i,k,o,a 

(
CT S o,a · HS i,k · qs i,k,o,a,s 

)
+ 

∑ 

k, j,p,a 

(
CT W p,a · HW k, j · qw k, j,p,a,s 

)
, ∀ s (3) 

h c s = 

∑ 

k,a 

CH a · h k,a,s , ∀ s (4) 

p c s = 

∑ 

j,a 

G a · z j,a,s , ∀ s (5) 
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The first group of constraints is to locate the warehouses. Eq. (6) restricts the number of selected warehouses. Eq. (7) re-

stricts the use of vehicles p to the selected warehouses. ∑ 

k 

w k ≤ γ (6)

w k ≤
∑ 

p,l 

yw k,p,l,s ≤ M · w k , ∀ k, s (7)

The second group of constraints is to allocate vehicles. Eqs. (8) and (9) restrict that at most one quantity interval of vehi-

cle types that can be selected under each scenario. We discretize the continuous number of vehicles as the quantity interval.

The higher the quantity interval hired, the more specific the number of vehicles that can be used. For example, 20 vehicles

are available if quantity interval 1 is hired, and 40 vehicles are available if quantity interval 2 is hired. Eqs. (10) –(12) re-

strict the number of vehicles to suppliers, warehouses, and the affected locations, respectively. We add the restriction to the

number of vehicles used under current scenarios to be less than the quantity of available vehicles under its corresponding

parent scenario. ∑ 

l 

xs o,l,s ≤ 1 , ∀ o, s (8)

∑ 

l 

xw p,l,s ≤ 1 , ∀ p, s (9)

xs o,l,ξ (s ) ≤
∑ 

i 

ys i,o,l,s ≤ xs o,l,ξ (s ) · V S o,l , ∀ o, l; s ≥ 2 (10)

xw p,l,ξ (s ) ≤
∑ 

k 

yw k,p,l,s ≤ xw p,l,ξ (s ) · V W p,l , ∀ p, l; s ≥ 2 (11)

∑ 

j 

y k, j,p,s = 

∑ 

l 

yw k,p,l,s , ∀ k, p; s ≥ 2 (12)

The third group of constraints is flow constraints. Eqs. (13) –(18) restrict the quantity delivered via vehicles to be less than

its corresponding transport capacity. Note that there are 2 elements in sets of O . We use 1 and 2 to represent airplanes and

trains, respectively. Considering the transport speed of trains, we thus add the restriction that the quantity transported under

current scenarios to be less than the total transport capacity of trains employed under the corresponding parent scenarios.

For instance, a quantity interval of trains is selected under the first stage of the scenario. The number of trains used is then

determined and the relief supplies loaded accordingly, under the second stage of the scenario. The relief supplies then arrive

at the warehouses under the third stage of the scenario. There are no such restrictions for airplanes, trucks, or helicopters.

Eq. (19) adds the restriction so that transported quantity from a supplier to all warehouses should not exceed its available

quantity. Eq. (20) restricts the delivered quantity via truck to be less than the network capacity. Note that there are 2

elements in the set of P , where 1 and 2 represent trucks and helicopters, respectively. Although network capacity is related

to the quantity of items by Eq. (20) , the quantity of items is also restricted by the number of vehicles, as shown by Eq. (18) ,

which means vehicles are related to the capacity, i.e., according to the network capacity, the model will assign an optimal

number of vehicles for delivering relief supplies. 

qs i,k, 1 ,a, 1 = 0 , ∀ i, k, a (13)

qs i,k, 2 ,a,s = 0 , ∀ i, k, a ; s < η (14)

∑ 

k,a 

qs i,k, 1 ,a,s · μa ≤
∑ 

l 

ys i, 1 ,l,s · ES 1 , ∀ i ; s ≥ 2 (15)

∑ 

k,a 

qs i,k, 2 ,a,s · μa ≤
∑ 

l 

ys i, 2 ,l,ξ (s ) · ES 2 , ∀ i ; s ≥ η (16)

qw k, j,p,a, 1 = 0 , ∀ k, j, p, a (17)

∑ 

a 

qw k, j,p,a,s · μa ≤ y k, j,p,s · EW p , ∀ k, j, p; s ≥ 2 (18)

∑ 

k,o 

qs i,k,o,a,s ≤ U i,a , ∀ i, a, s (19)

∑ 

a 

qw k, j, 1 ,a,s · μa ≤ ϕ k, j,s , ∀ k, j, s (20)
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The fourth group of constraints is to describe the inventory of warehouses. Considering that a certain quantity of sup-

plies is usually stored in each province for emergency events, the quantity of supplies at warehouses are calculated with

Eqs. (21) and (22) under each scenario. Because the handling capacity and space of warehouses is limited, costs are gener-

ated by handling the additional quantity of supplies, calculated with Eq. (23) . 

v k,a, 1 = R k,a · w k , ∀ k, a (21) 

v k,a,s = v k,a,ξ ( s ) + 

∑ 

i,o 

qs i,k,o,a,s −
∑ 

j,p 

qw k, j,p,a,s , ∀ k, a ; s ≥ 2 (22) 

h k,a,s ≥
∑ 

i,o 

qs i,k,o,a,s + 

∑ 

j,p 

qw k, j,p,a,s − Q k,a , ∀ k, a, s (23) 

The last group of constraints calculates unsatisfied demand and handles the boundaries and integrities of decision vari-

ables. Set A consists of 3 elements. Type 1 items are those that are consumed regularly, such as food, water, and hygiene

kits. Supplies like tents, blankets, coat, lighting equipment, and mosquito nets are examples of Type 2 items. Type 3 items

are medical supplies. For those supplies which are consumed regularly (i.e. type 1 items), the unsatisfied demand is calcu-

lated with Eq. (25) . For type 2 and 3 items, unsatisfied demand is calculated with Eqs. (26) and (27) . Eqs. (28) –(31) defines

the integrity of the variables. 

z j,a, 1 = 0 , ∀ j, a (24) 

z j, 1 ,s = D j, 1 −
∑ 

k,p 

qw k, j,p, 1 ,s , ∀ j; s ≥ 2 (25) 

z j,a,s = D j,a −
∑ 

k,p 

qw k, j,p,a,s , ∀ j; a ≥ 2 , 2 ≤ s < η (26) 

z j,a,s = z j,a,ξ ( s ) −
∑ 

k,p 

qw k, j,p,a,s , ∀ j; a ≥ 2 , s ≥ η (27) 

w k ∈ { 0 , 1 } , ∀ k (28) 

xs o,l,s ∈ { 0 , 1 } , ∀ o, l, s (29) 

xw p,l,s ∈ { 0 , 1 } , ∀ p, l, s (30) 

ys i,o,l,s , y w k,p,l,s , y k, j,p,s , q s i,k,o,a,s , q w k, j,p,a,s , v k,a,s , h k,a,s , z j,a,s ∈ Z + , ∀ i, j, k, o, p, a, s (31)

This multi-stage stochastic programming model is NP-hard. This follows the fact that the proliferation of variables and

constraints to represent conditions and actions in several possible future scenarios. Moreover, the proposed model contains

complex structure information of the scenario trees (e.g., inter-stage dependence). 

4. Solution methodology 

Rockafellar and Wets (1991) proposed the progressive hedging algorithm (PHA), which is widely employed to solve

stochastic programming problems. The basic idea of PHA is to decompose the stochastic programming problem based on

the scenario and iteratively solve penalized versions of the sub-problems to gradually enforce convergence. In each iteration

of PHA, an aggregated solution that satisfies the non-anticipativity constraints is formed and penalties are applied in the

next iteration based on deviations from that solution ( Gade et al., 2016 ). The individual scenario problems can be easily

solved separately. A flowchart of the PHA is illustrated in Fig. 3 . 

To apply PHA, scenarios are redefined. Fig. 4 presents a sample scenario tree. The standard form and disaggregated form

of the scenario tree are shown in Fig. 4 ( a ) and ( b ), respectively. The paths from the root scenario to the scenarios can be

used to describe realizations of the stochastic process from the present stage to the stages where scenarios appear. A full

evolution of the stochastic process, a path from the root scenario to the scenarios which belong to the last stage, is called a

scenario sequence, indexed by n ∈ N . As shown in Fig. 4 ( b ), the set of scenario sequences N comprises 6 elements. 

To ensure that solutions of the disaggregated form are feasible in the standard form, non-anticipativity constraints must

be satisfied. We introduce a set of scenario bundles, indexed by b ( n, t ) ∈ B . There is a unique corresponding scenario bundle

b ( n, t ) at stage t in scenario sequence n . If two or more scenario sequences share the same realization at a stage, this

indicates that they share the same scenario bundle. Therefore, the non-anticipativity constraints force the decisions made at

this stage to be the same across corresponding scenario sequences. For instance, as shown in Fig. 4 ( b ), scenario sequences

1 and 2 share scenario bundle 2 at stage 2, i.e., b (1, 2) = b (2, 2) = 2. The set of scenario bundles B comprises 4 elements.
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Initialize
Determine parameters
Construct the scenario tree
Calculate the scenario probabilities

Relaxation and Decomposition
Formulate deterministic equivalent model
Relax non-anticipativity constraints via augmented Lagrangian relaxation
Decompose the model into deterministic scenario sub problems with augmented objective function

Solve Deterministic Scenario Sub Problems
Update the augmented Lagrangian objective
Solve the problem

Check for Convergence
Are scenario sub problem solutions feasible for 
non-anticipativity constraints?

Parameter Update
Update Lagrangian multipliers
Update penalty parameters
Update consensus variables

Display results (objective and solution)
Yes

No

Fig. 3. Flowchart of the PHA ( Aydin, 2012 ). 

Fig. 4. Standard form and disaggregated form of the scenario tree. 

 
More specifically, if a decision is made under scenario sequence 1 at stage 2, then the same decision has to be made under

scenario sequence 2 at stage 2. A more specific instance is given after the following definitions. 

The additional notations and revised decision variables are presented as follows. 

Additional sets and indices 

N Set of scenario sequences, indexed by n. 

T Set of the stage, indexed by t. 

B Set of scenario bundles, indexed by b ( n,t ) . 

Revised and additional parameters 

ϕk,j,t Capability of the road from warehouse k to affected location j at stage t . 

Pr n Probability of occurrence of scenario sequence n. 

CRS o,l,t Unit rental for hiring type o vehicles in quantity interval l at stage t . 

CRW p,l,t Unit rental for hiring type p vehicles in quantity interval l at stage t . 

ˆ w 

k 
Probability of warehouse k being selected to temporarily store supplies. ̂ ys b(n,t) 

i,o,l 
Number of type o vehicles used by supplier i in quantity interval l in bundle b(n,t) . ̂ qw 

b(n,t) 
k, j,p,a 

Quantity of type a items delivered from warehouse k to affected location j via type p vehicles in bundle b(n,t) . 

Revised decision variables 

w 

n 
k 

If warehouse k is selected for temporarily storing supplies, w 

n 
k 

= 1 ; otherwise, w 

n 
k 

= 0 . 

xs n 
o,l,t 

If type o vehicles are set to the quantity interval l at stage t , xs n 
o,l,t 

= 1 ; otherwise, xs n 
o,l,t 

= 0 . 
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xw 

n 
p,l,t 

If type p vehicles are set to the quantity interval l at stage t , xw 

n 
p,l,t 

= 1 ; otherwise, xw 

n 
p,l,t 

= 0 . 

ys n 
i,o,l,t 

Number of type o vehicles used by supplier i in quantity interval l at stage t . 

yw 

n 
k,p,l,t 

Number of type p vehicles used by warehouse k in quantity interval l at stage t . 

y n 
k, j,p,t 

Number of type p vehicles used for delivering supplies from warehouse k to affected location j at stage t . 

qs n 
i,k,o,a,t 

Quantity of type a items delivered from supplier i to warehouse k via type o vehicles at stage t . 

qw 

n 
k, j,p,a,t 

Quantity of type a items delivered from warehouse k to affected location j via type p vehicles at stage t . 

v n 
k,a,t 

Quantity of type a items at warehouse k at stage t . 

h n 
k,a,t 

Additional quantity of type a items which need be handled by additional workforce at warehouse k at stage t . 

z n 
j,a,t 

Shortage of types a items at affected location j at stage t . 

In the disaggregated form, parameter network capacity φ is deterministic for scenario sequence n . The multi-stage

stochastic model is thus transferred to a multi-stage deterministic model, which is easily solved. Note that a branch and

bound algorithm is employed to solve the multi-stage deterministic model, which is performed in CPLEX. For each sce-

nario sequence n , the multi-stage deterministic model is presented in Appendix A . We use decision variable ys as an ex-

ample to show how decisions are synchronized by using the non-anticipativity constraint. For instance, under scenario se-

quence 1 and 2, the number of vehicles used at stage 2 is ys 1 
i,o,l, 2 

, ys 2 
i,o,l, 2 

, ∀ i, o, l. Because they share scenario bundle

2, to ensure that solutions of the disaggregated form are feasible in the standard form, the non-anticipativity constraint

ys 1 
i,o,l, 2 

= ys 2 
i,o,l, 2 

, ∀ i, o, l must be satisfied. 

To facilitate the generation of scenario sub-problem, the consensus variables ˆ w k , ̂ ys b(n,t) 
i,o,l 

, ̂ qw 

b(n,t) 
k, j,p,a 

are defined. The multi-

stage deterministic model must consider non-anticipativity constraints, as shown in Eqs. (32) –(34) . 

w 

n 
k = 

ˆ w k , ∀ k, n (32) 

ys n i,o,l,t = 

̂ ys 
b(n,t) 
i,o,l 

, ∀ i, o, l, t, n (33) 

qw 

n 
k, j,p,a,t = 

̂ qw 

b(n,t) 
k, j,p,a 

, ∀ k, j, p, a, t, n (34) 

An augmented Lagrangian relaxation technique is usually applied to relax the non-anticipativity constraints, which are

moved into the objective function as penalty terms with Lagrangian multipliers and the penalty parameter. λw , λys , λqw denote

the Lagrangian multipliers, and ρw , ρys , ρqw denote the penalty parameters. PHA incrementally enforces non-anticipativity by

penalizing deviations from the average values of decision variables ( Veliz et al., 2015 ). Hence, the new objective function of

each scenario sub-problem is rewritten as Eq. (35) . 

f = min 

∑ 

t 

( r c t + t c t + h c t + p c t ) + 

∑ 

k 

λw 

k,n ·
(
w 

n 
k − ˆ w k 

)
+ 

1 

2 

ρw 

∑ 

k 

(
w 

n 
k − ˆ w k 

)2 

+ 

∑ 

i,o,l,t 

λys 

i,o,l,t,n 
·
(

ys n i,o,l,t − ̂ ys 
b(n,t) 
i,o,l 

)
+ 

∑ 

k, j,p,a,t 

λqw 

k, j,p,a,t,n 
·
(

qw 

n 
k, j,p,a,t − ̂ qw 

b(n,t) 
k, j,p,a 

)
+ 

1 

2 

ρys 
∑ 

i,o,l,t 

(
ys n i,o,l,t − ̂ ys 

b(n,t) 
i,o,l 

)2 

+ 

1 

2 

ρqw 

∑ 

k, j,p,a,t 

(
qw 

n 
k, j,p,a,t − ̂ qw 

b(n,t) 
k, j,p,a 

)2 

(35) 

Since quadratic mixed-integer program models are difficult to solve, quadratic penalty components are thus linearized as

follows. For the quadratic penalty component which contains the binary decision variable, its linearization form is shown as

the second and third components in Eq. (36) . Moreover, the method presented by Long et al. (2012) is employed to linearize

the quadratic penalty component which contains the integer decision variable. According to their method, ys and qw can be

forced to converge by augmenting the objective function, which is expressed as the fourth and fifth components in Eq. (36) .

Then, Eqs. (37) –(39) are introduced to convert the absolute forms to linearization forms. Hence, the objective function is

rewritten as Eq. (40) . 

f = min 

∑ 

t 

( r c t + t c t + h c t + p c t ) + 

∑ 

k 

λw 

k,n ·
(
w 

n 
k − ˆ w k 

)
+ 

1 

2 

ρw 

∑ 

k 

(
w 

n 
k − 2 · w 

n 
k · ˆ w k + 

ˆ w k 

)
+ 

∑ 

i,o,l,t 

λys 

i,o,l,t,n 
·
∣∣∣ys n i,o,l,t − ̂ ys 

b(n,t) 
i,o,l 

∣∣∣+ 

∑ 

k, j,p,a,t 

λqw 

k, j,p,a,t,n 
·
∣∣∣qw 

n 
k, j,p,a,t − ̂ qw 

b(n,t) 
k, j,p,a 

∣∣∣ (36) 

os i,o,l,t − os ′ i,o,l,t = ys n i,o,l,t − ̂ ys 
b(n,t) 
i,o,l 

, ∀ i, o, l, t, n (37) 

ow k, j,p,a,t − ow 

′ 
k, j,p,a,t = qw 

n 
k, j,p,a,t − ̂ qw 

b(n,t) 
k, j,p,a 

, ∀ k, j, p, a, t, n (38) 

o s i,o,l,t , os ′ i,o,l,t , ow k, j,p,a,t , ow 

′ 
k, j,p,a,t ≥ 0 , ∀ i, j, k, o, p, l, a, t (39)
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f = min 

∑ 

t 

( r c t + t c t + h c t + p c t ) + 

∑ 

k 

λw 

k,n ·
(
w 

n 
k − ˆ w k 

)
+ 

1 

2 

ρw 

∑ 

k 

(
w 

n 
k − 2 · w 

n 
k · ˆ w k + 

ˆ w k 

)
+ 

∑ 

i,o,l,t 

λys 

i,o,l,t,n 
·
(
o s i,o,l,t + os ′ i,o,l,t 

)
+ 

∑ 

k, j,p,a,t 

λqw 

k, j,p,a,t,n 
·
(
ow k, j,p,a,t + ow 

′ 
k, j,p,a,t 

)
(40)

The values of consensus variables are usually set as the expected values of the optimal solutions of each scenario-based

sub-problem. The value of consensus variable ˆ w k is calculated as Eq. (41) . A proximal point method ( Rockafellar, 1976; Gul

et al., 2015 ) is employed to estimate the values of ̂ ys b( n,t ) 
i,o,l 

by weighted sum calculation, as shown in Eq. (42) . The subset

of scenario sequences N 

′ 
b( n,t ) 

is introduced, where N 

′ 
b( n,t ) 

⊂ N. For instance, as shown in Fig. 4 ( b ), if b ( n , 2) = 2, n ∈ N 

′ = { 1 , 2 } ,̂ qw can be calculated to be the same as ̂ ys . 

ˆ w k = 

∑ 

n 

Pr n · w 

n 
k , ∀ k (41)

̂ ys 
b(n,t) 
i,o,l 

= 

∑ 

n ∈ N ′ 
b ( n,t ) 

Pr n ∑ 

n ∈ N ′ 
b ( n,t ) 

Pr n 
ys n i,o,l,t , ∀ i, o, l, t, b(n, t) (42)

The method for updating penalty parameters, Lagrangian multipliers, and PHA termination criterion are described below.

The penalty parameter has a large impact on the performance of PHA. The algorithm will quickly show convergence and

obtain a suboptimal solution if ρ is larger. However, it would converge slowly, and arrive at an approximately optimal

solution if ρ is smaller. A method presented by Hvattum and Lokketangen (2009) of updating the penalty parameter based

on the information about the convergence rate has a significant impact on obtaining a better solution and the speed of

convergence. The implementation of this method is shown in Eqs. (43) –(45) , where βD and βP denote the penalty update

multipliers. ρw and ρqw can be calculated to be the same as ρys . 

For Lagrangian multiplies λw , we update their values by Eqs. (46) and (47) . The values of the Lagrangian multipliers λw

are increased (decreased) if w 

n (r) 
k 

> ˆ w 

r−1 
k 

( w 

n (r) 
k 

< ˆ w 

r−1 
k 

), which give an incentive to close (open) a warehouse. According to

Long et al. (2012) , the values of the Lagrangian multipliers λys are updated in Eqs. (48) and (49) . λqw can be calculated to

be the same as λys . The termination criteria are set as the gap between optimal solutions of sub-problems and consensus

variables being sufficiently small, as shown in Eqs. (50) –(52) . 

θ P ( r ) = 

∑ 

i,o,l,t,n 

(̂ ys 
b(n,t) ( r ) 
i,o,l 

− ̂ ys 
b(n,t) ( r−1 ) 
i,o,l 

)2 

(43)

θD ( r ) = 

∑ 

i,o,l,t,n 

(
ys 

n ( r ) 
i,o,l,t 

− ̂ ys 
b(n,t) ( r ) 
i,o,l 

)2 

(44)

ρys ( r ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

βD · ρys ( r−1 ) , if θD ( r−1 ) − θD ( r−2 ) > 0 

1 

βP 
· ρys ( r−1 ) , else if θ P ( r−1 ) − θ P ( r−2 ) > 0 

ρys ( r−1 ) , else 

(45)

λw ( 0 ) 
k,n 

= ρw ( 0 ) ·
(
w 

n ( 0 ) 
k 

− ˆ w 

( 0 ) 
k 

)
, ∀ k, n (46)

λw ( r ) 
k,n 

= λw ( r−1 ) 
k,n 

+ ρw ( r−1 ) ·
(
w 

n ( r ) 
k 

− ˆ w 

( r−1 ) 
k 

)
, ∀ k, n (47)

λys ( 0 ) 
i,o,l,t,n 

= ρys ( 0 ) ·
∣∣∣ys 

n ( 0 ) 
i,o,l,t 

− ̂ ys 
b(n,t) ( 0 ) 
i,o,l 

∣∣∣, ∀ i, o, l, t, n (48)

λys ( r ) 
i,o,l,t,n 

= λys ( r−1 ) 
i,o,l,t,n 

+ ρys ( r−1 ) ·
∣∣∣ys 

n ( r ) 
i,o,l,t 

− ̂ ys 
b(n,t) ( r−1 ) 
i,o,l 

∣∣∣, ∀ i, o, l, t, n (49)

∑ 

n 

Pr n 

( ∑ 

k 

∣∣w 

n ( r ) 
k 

− ˆ w 

( r ) 
k 

∣∣) 

≤ ε (50)

∑ 

n 

Pr n 

( ∑ 

i,o,l,t 

∣∣∣ys 
n ( r ) 
i,o,l,t 

− ̂ ys 
b(n,t) ( r ) 
i,o,l 

∣∣∣) 

≤ ε (51)

∑ 

n 

Pr n 

( ∑ 

k, j,p,a,t 

∣∣∣qw 

n 
k, j,p,a,t − ̂ qw 

b(n,t) 
k, j,p,a 

∣∣∣) 

≤ ε (52)
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Although PHA may eventually force an agreement between the decision variables and the consensus variables, many

iterations are required (which is very time-consuming) for complex stochastic integer programming problems, such as the

presence of binary variables. Variable fixing is a common heuristic strategy ( Watson and Woodruff, 2011; Veliz et al., 2015 )

which is used in PHA for obtaining solutions more quickly. For each PH iteration, a high value of ˆ w k indicates that warehouse

k would be selected under most scenario sub-problems. We thus present the strategy, i.e. when ˆ w k is continuously higher

than a given threshold σ for several PH iterations to quickly select warehouses. 

The implementation of PHA is explained below. 

Step Description 

1 Set algorithm terminates = false, r = 0, ρw (0) = 1, ρys (0) = ρqw (0) = 0.01, ε = 0.001; 

2 While algorithm terminates = false 

3 for n ∈ N 
4 Solve multi-stage deterministic model (see Appendix A ), and collect optimal solutions w 

n 
k 
, ys n 

i,o,l,t 
, qw 

n 
k, j,p,a,t 

5 end for 

6 Calculate the values of consensus variables ˆ w 

k 
, ̂ ys 

b(n,t) 
i,o,l 

and ̂ qw 

b(n,t) 
k, j,p,a 

using Eqs. (41) and (42) 

7 Calculate the initial values of the Lagrangian multipliers λw (0) 
k,n 

, λys (0) 
i,o,l,t,n 

, and λqw (0) 
k, j,p,a,t,n 

using Eqs. (46) and (48) 

8 Set r = 1 

9 for n ∈ N 
10 Solve multi-stage deterministic model using new objective Eq. (40) , and collect optimal solutions w 

n 
k 
, ys n 

i,o,l,t 
and qw 

n 
k, j,p,a,t 

11 end for 

12 Update the values of consensus variables ˆ w 

k 
, ̂ ys 

b(n,t) 
i,o,l 

and ̂ qw 

b(n,t) 
k, j,p,a 

using Eqs. (41) and (42) 

13 Update values of the penalty parameters ρw ( r ) , ρys ( r ) and ρqw ( r ) using Eqs. (43) –(45) 

14 Update values of the Lagrangian multipliers λw (r) 
k,n 

, λys (r) 
i,o,l,t,n 

and λqw (r) 
k, j,p,a,t,n 

using Eqs. (47) and (49) 

15 if Eqs. (50) –(52) are true 

16 Set algorithm terminates = true 

17 end if 

18 else 

19 Set r = r + 1 

20 end else 

21 end while 

5. Case study 

5.1. Estimation of input data 

An earthquake took place on April 20, 2013, in Yaan of Sichuan Province, China. This earthquake affected 1.52 million

people, including 196 deaths, 11,470 injuries, 21 people missing, and reconstruction budgets exceeding 86 billion Yuan ( http:

//www.csi.ac.cn/ ). The most serious damage happened in Longmen village, where 99% of the houses collapsed. In this study,

the real-world case of an earthquake in Yaan is used to estimate input data. Fig. 6 shows the research region. Below, the

sets are configured and the input data for the parameters are estimated. 

As defined in the previously mentioned model, eight sets are provided. The set of suppliers ( I ) consists of 10 elements,

labeled as 1 through 10. The set of demand locations ( J ) consists of 9 elements. In this study, only the locations in the

vicinity of the highway can be selected as temporary warehouse locations. The set of warehouses ( K ) contains 6 elements,

labeled 1, 2, 6, 7, 8, and 9. Airplanes and trains are used to transport supplies from suppliers to temporary warehouses

during long distance transportation. There are 2 elements in the set of O , where 1 and 2 represent airplanes and trains,

respectively. Truck and helicopter are used to deliver supplies for local distribution. There are 2 elements in the set of P ,

where 1 and 2 represent trucks and helicopters, respectively. Here, we only consider two temporary warehouses and three

types of supplies. The demand of one person for type 1 items and type 3 items stands as a unit, while the demand of four

people for type 2 items stands as a unit. The demand for type 3 items is assumed to be 1/8 of the affected population. The

earthquake-affected locations, population, and demand for supplies are shown in Table 2 . 
Table 2 

Earthquake-affected locations, population, and demand for supplies. 

No. Location Affected population Type 1 Type 2 Type 3 

1 Yucheng 192,0 0 0 192,0 0 0 48,0 0 0 24,0 0 0 

2 Mingshan 155,100 155,100 38,775 19,387 

3 Tianquan 138,0 0 0 138,0 0 0 34,500 17,250 

4 Lushan 120,0 0 0 120,0 0 0 30,0 0 0 15,0 0 0 

5 Baoxing 54,0 0 0 54,0 0 0 13,500 6,750 

6 Qionglai 367,800 367,800 91,950 45,975 

7 Dayi 30 0,0 0 0 30 0,0 0 0 75,0 0 0 37,500 

8 Danling 99,0 0 0 99,0 0 0 24,750 12,375 

9 Pujiang 156,0 0 0 156,0 0 0 39,0 0 0 19,500 

http://www.csi.ac.cn/
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Fig. 5. Scenario tree with probabilities for numerical analysis. 

Table 3 

The quantity of airplanes, trains, trucks, and helicopters for each quantity interval. 

Quantity interval 1 2 3 4 5 6 7 8 9 10 

Airplane 15 30 45 60 75 90 105 120 135 150 

Train 3 6 9 12 15 18 21 24 27 30 

Truck 30 60 90 120 150 180 210 240 270 300 

Helicopter 15 30 45 60 75 90 105 120 135 150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 displays the scenario tree for numerical analysis. The set of scenarios ( S ) consists of 16 elements. The set of parent

scenarios ( �) consists of 6 elements. We define that there are four types of secondary disasters: minor, moderate, ma-

jor, and catastrophe ( Moreno et al., 2016 ). We believe that secondary disasters frequently occur on the first day after an

earthquake. We define scenarios 2–6 as the catastrophe, major disaster, moderate disaster, minor disaster, and normal sit-

uation, respectively. Scenarios 7, 9, 11, 13, and 15 represent moderate disasters. The remaining scenarios represent normal

situations. 

To determine the probability of occurrence of each arc, we analyze historical data of the types and frequencies of sec-

ondary disasters after major earthquakes in China. Because there is a high probability that major secondary disasters occur

on the first day following an earthquake, we assume that the probability of occurrence of the arc to scenario 2 is the

greatest, while the arc to scenario 6 is the smallest. Further, the probabilities of the arc to the secondary disaster scenar-

ios 7, 9, 11, 13, and 15 are larger than normal scenarios 8, 10, 12, 14, and 16. As defined in Section 3.1 , for instance, the

probability of scenario 7 equals the product of 0.3 and 0.7. The network capacity of each stage from the warehouses to

affected locations is assumed to be proportional to the demand in the affected locations. It is generated based on a dis-

crete uniform distribution that considers the impacts of secondary disasters. Three rules are considered: 1) based on the

real situations in Yaan earthquake, the capacity of routes to affected locations 3, 4, and 5 is 0; 2) for the same stage, the

network capacity of serious scenarios is smaller than that of unserious scenarios. For instance, the network capacity of

scenario 3 (major disaster) is smaller than that of scenario 5 (minor disaster); 3) the network capacity under the current

scenario is larger than or equal to that of its corresponding parent scenario. For instance, the network capacity of scenario

2 is smaller than that of scenario 8. Road network capacity under scenarios and its probabilities can be found in Mendeley

data. 

In order to assure relief supplies can be transported to disaster-affected locations on time, a certain number of airplanes,

trains, trucks, and in some cases even helicopters, must be rented from commercial carriers. Table 3 presents the quantity

of airplanes, trains, trucks, and helicopters that can be rented, in quantity intervals. Rental for airplanes, trains, trucks,

and helicopters for different quantity intervals and scenarios are shown in Table 4 . Rental is determined according to the

following rules. For a stage, the rental increases when a large quantity interval is hired. However, for a quantity interval, the

rental is higher in the earlier time because of urgency, since as time goes on, the unit rental decreases. Using the airplane

as an example, the cost is ¥6,450 (¥ denotes Chinese Yuan) instead of ¥5,750 per airplane if the quantity interval of 6 is

hired instead of the quantity interval of 5 under scenario 1. For quantity interval 5, the rental is ¥5,750, ¥5,450 and ¥5,150

per airplane under scenarios 1, 2–6, and 7–16, respectively. 

One truck can transport up to 2,500 units and one plane can transport up to 5,0 0 0 units ( Rottkemper et al., 2012 ), while

a helicopter can move up to 500 units. In reality, most of the capacity of trains are used to transport fuel. We thus assume

that one train can transport up to 20,0 0 0 units of the studied items. The distance between suppliers and warehouses and the

distance between warehouses and disaster-affected locations is presented in Appendix B . All remaining parameters defined

in the previously mentioned model are shown in Table 5 . 
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Table 4 

Rental for airplanes, trains, trucks, and helicopters for different quantity intervals and scenarios. 

Scenario Vehicle Quantity interval 

1 2 3 4 5 6 7 8 9 10 

1 Airplane 5,0 0 0 5,0 0 0 5,0 0 0 5,250 5,750 6,450 7,450 8,750 10,350 12,250 

Train 5,0 0 0 5,0 0 0 5,0 0 0 5,250 5,750 6,450 7,450 8,750 10,350 12,250 

2–6 Airplane 4,700 4,700 4,700 4,950 5,450 6,150 7,150 8,450 10,050 11,950 

Train 4,700 4,700 4,700 4,950 5,450 6,150 7,150 8,450 10,050 11,950 

7–16 Airplane 4,400 4,400 4,400 4,650 5,150 5,850 6,850 8,150 9,750 11,650 

Train 4,400 4,400 4,400 4,650 5,150 5,850 6,850 8,150 9,750 11,650 

1 Truck 500 500 500 525 575 645 745 875 1,035 1,225 

Helicopter 2,500 2,500 2,500 2,625 2,875 3,225 3,725 4,375 5,175 6,125 

2–6 Truck 470 470 470 495 545 615 715 845 1,005 1,195 

Helicopter 2,350 2,350 2,350 2,475 2,725 3,075 3,575 4,225 5,025 5,975 

7–16 Truck 440 440 440 465 515 585 685 815 975 1,165 

Helicopter 2,200 2,200 2,200 2,325 2,575 2,925 3,425 4,075 4,875 5,825 

Table 5 

Estimated parameters. 

No Category Estimation 

1 The handling capacity of a warehouse, the initial 

quantity of supplies at the warehouse, Quantity 

of supplies at the supplier 

Q :, a = {40 10 5} × 10 4 unit 

R :, a = {20 5 2.5} × 10 4 unit 

U :, a = { U (5, 10) U (20, 40) U (2.5, 5)} × 10 4 unit 

2 The volume of supplies, The transport capacity of 

vehicles O , The transport capacity of vehicles P 

N a = {0.1 1 0.5} unit , ES o = { 5 , 0 0 0 20 , 0 0 0 } unit 

EW p = { 2 , 50 0 50 0 } unit 

3 Unit cost for transport, holding supplies, and 

penalty for the shortage of supplies 

CT S o,a = 

{
0 . 09 0 . 0225 0 . 0225 

0 . 02 0 . 005 0 . 005 

}
yuan / unit · km 

CT W p,a = 

{
0 . 04 0 . 01 0 . 01 

0 . 2 0 . 05 0 . 05 

}
yuan / unit · km 

CH a = { 1 5 10 } yuan / unit · day 

G a = {10 2, 460 5, 0 0 0} yuan / unit · day 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Numerical analysis 

(1) General results 

CPLEX Optimization Studio 12.6, a commercial optimization package, is widely employed for formulating and solving di-

verse optimization problems. The experiments were conducted on an Intel Core i5 PC with the processing power of 3.20 GHz

and 8GB memory running under Windows 10. For 16 scenarios, the optimal solution can be found within 117 s. Results and

observations are discussed below. Based on the results, the locations of suppliers and warehouses are shown in Fig. 6 . Fig. 7

shows dynamic vehicles allocation in local distribution under scenarios 2 and 8. Distance is an important factor, and the

model tends to select sources which are closer to the earthquake-affected locations. Moreover, selected warehouses are

closer to the two groups of the affected locations. As shown in Fig. 7 , the warehouse located at location 1 is primarily re-

sponsible for the demand of affected locations 1–5, while the other one located at location 7 is primarily responsible for the

demand of affected locations 6–9. The helicopters are all used to deliver relief supplies from warehouse 1 to affected loca-

tions 3–5. This is because that their road capacity is zero. Furthermore, as a child scenario of scenario 2, vehicles allocation

decision of scenario 8 dependent on remaining demand and road capacity. For instance, as a large proportion of demand is

satisfied in scenario 2, the number of vehicles used in scenario 8 decreases. As road capacity between locations 1 and 3, 1

and 4 increases, trucks are used to deliver relief supplies. 

Fig. 8 shows the number of airplanes, trains, trucks, and helicopters used in various scenarios. Note that the number of

vehicles used is different across scenarios at each stage. This is because the road capacity is different in each scenario. For

instance, since scenario 4 has larger road capacity than scenario 3, the model tends to use 2 more airplanes and 5 more

trucks to deliver relief supplies. When network capacity becomes larger, the decision should be to rent more airplanes and

trucks to deliver relief supplies. This is because airplanes have higher time efficiency than trains, and trucks have a much

larger capacity than helicopters. The proposed relief distribution with consideration of the state of road network is better

at accommodating transportation infrastructure and victims’ needs compared to the traditional transshipment network. This 

could help to improve the use of network capacity and decrease penalty cost. 

Table 6 shows the quantity of supplies transported via airplane, train, truck, and helicopter. As shown in Fig. 8 , scenar-

ios 2–6 belong to stage 2, and scenario 7–16 belong to stage 3. Although 11 trains were used in stage 2, no items were

transported by trains in stage 2. This is because the assigned trains in stage 2 will arrive on stage 3, as shown in Fig. 8 and

Table 6 . Type 2 and 3 items have higher unit penalty cost, thus they tend to be transported by airplane at stage 2. All

helicopters are used for delivering type 2 and 3 items within stage 2. This result reveals that airplanes and helicopters tend
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Table 6 

Quantity of supplies transported via airplane, train, truck, and helicopter ( ×10 3 unit). 

Scenario Type (via airplane) Type (via train) Type (via truck) Type (via helicopter) 

1 2 3 1 2 3 1 2 3 1 2 3 

2 100.0 273.0 147.7 0 0 0 500.0 317.5 158.7 0 55.5 39.0 

3 100.0 273.0 147.7 0 0 0 500.0 317.5 158.7 0 55.5 39.0 

4 100.0 283.0 147.7 0 0 0 500.0 327.5 158.7 0 55.5 39.0 

5 100.0 283.0 147.7 0 0 0 500.0 327.5 158.7 0 55.5 39.0 

6 100.0 273.0 147.7 0 0 0 500.0 317.5 158.7 0 55.5 39.0 

7 0 0 0 1419.0 23.0 0 1269.9 0 0 149.0 22.5 0 

8 0 0 0 1518.7 22.5 0 1369.9 0 0 148.8 22.5 0 

9 0 0 0 1418.7 22.5 0 1269.9 0 0 148.8 22.5 0 

10 0 0 0 1527.9 22.5 0 1469.9 0 0 58.0 22.5 0 

11 0 0 0 1523.7 12.5 0 1369.9 0 0 153.8 12.5 0 

12 0 0 0 1573.7 12.5 0 1519.9 0 0 53.8 12.5 0 

13 0 0 0 1527.9 12.5 0 1369.9 0 0 158.0 12.5 0 

14 0 0 0 1573.7 12.5 0 1519.9 0 0 53.8 12.5 0 

15 0 0 0 1418.7 22.5 0 1269.9 0 0 148.8 22.5 0 

16 0 0 0 1574.2 22.5 0 1574.2 5 0 0 17.9 0 

Table 7 

Quantity of supplies at the warehouses at the beginning of the scenarios ( ×10 3 unit). 

Scenario Type 1 Type 2 Type 3 

Location 1 Location 7 Location 1 Location 7 Location 1 Location 7 

2 200.0 300.0 139.8 233.2 76.4 121.3 

3 200.0 300.0 139.8 233.2 77.4 120.3 

4 200.0 300.0 139.8 243.2 76.4 121.3 

5 200.0 300.0 139.8 243.2 77.4 120.3 

6 200.0 300.0 139.8 233.2 77.4 120.3 

7 495.9 922.8 22.5 0 0 0 

8 595.8 922.8 22.5 0 0 0 

9 495.9 922.8 22.5 0 0 0 

10 605.1 922.8 22.5 0 0 0 

11 605.1 922.8 12.5 0 0 0 

12 651.3 922.8 12.5 0 0 0 

13 605.1 922.8 12.5 0 0 0 

14 653.5 922.8 12.5 0 0 0 

15 565.8 922.8 22.5 0 0 0 

16 653.5 922.8 22.5 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to be used to deliver relief supplies with higher urgency (i.e., type 2 and 3 items), in order to greatly decrease the shortage

risk of relief supplies. When type 3 items are all satisfied at stage 2, helicopters are used for delivering type 1 items during

stage 3. Since type 1 items have the lowest unit penalty cost, they are transported via train and truck. This is intuitive if

demand for types 2 and 3 items is satisfied, and the distribution of regularly consumed supplies becomes routine. It may

reduce costs if the distribution for type 1 items is outsourced to logistics companies. 

Table 7 shows the quantity of supplies at the warehouse at the beginning of scenarios. The quantity of supplies at the

two warehouses at the beginning of stage 3 is zero because the demand for type 3 items is satisfied at the end of stage 2.

The demand for type 2 items at affected locations 3, 4 and 5 is not fully supplied at the end of stage 2 due to the limitation

of helicopters. The warehouse located at location 1 has to reserve type 2 items at the beginning of stage 3. Type 1 items are

mainly transported by trains and delivered at the beginning of stage 3. Therefore, the two warehouses have a large quantity

of supplies at this stage. 

We next investigate the sensitivity of the costs to the changes in handling capacity, unit penalty costs, inventory, unit

transportation cost and unit rental. We modify its value from −50% of the original input to + 50%, respectively. A summary

of the costs is presented in Table 8 . The rc, tc, hc and pc represent rental cost, transportation cost, handling cost, and the

penalty cost, respectively. Several observations are made based on these results. The optimal solutions of all cases can be

found within 500 s. 

(2) Effects of handling capacity and unit penalty cost 

When handling capacity declines (increases), handling cost tends to increase (decline). This is intuitive, as warehouses

can keep their handling capacity stable by employing more (fewer) resources. Moreover, the supplies delivered are barely

changed. In practice, the quantity of supplies handled in temporary warehouses usually greatly exceeds their handling ca-

pacity. Therefore, selecting warehouses that offer large handling capacity is especially beneficial to maintain a stable flow of

relief supplies. 
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Table 8 

Sensitivity of costs to the changes in handling capacity, unit penalty costs, inventory, unit 

transportation cost and unit rental. 

Handling capacity Q Unit penalty cost G 

−50% −25% + 25% + 50% −50% −25% + 25% + 50% 

rc + 1.1 −0.1 + 0.3 + 4.8 −11.0 −8.6 + 10.9 + 10.9 

tc −2.5 −1.4 + 1.4 + 2.0 −21.7 −9.3 + 9.6 + 9.7 

hc + 21.2 + 10.7 −10.1 −20.9 −31.6 −7.4 + 5.5 + 5.5 

pc + 1.2 + 0.7 −0.8 −0.8 −39.6 −20.3 + 18.7 + 42.4 

Total + 1.6 + 0.8 −0.8 −1.4 −33.3 −15.9 + 14.9 + 29.5 

Inventory of supplier U Inventory of warehouse R 

rc −5.6 −4.1 + 0.8 + 1.7 + 7.5 + 4.5 −1.9 −5.9 

tc + 25.1 + 5.5 −5.2 −7.3 + 17.1 + 8.3 −8.1 −16.5 

hc −4.9 −3.8 + 0.8 + 1.0 + 7.4 + 3.6 −3.4 −7.1 

pc + 3.0 + 2.4 + 0.1 −0.6 + 2.5 + 1.3 −1.4 −2.6 

Total + 8.7 + 2.7 −1.4 −2.4 + 7.2 + 3.6 −3.5 −7.1 

Unit transport cost via vehicle o CTS Unit transport cost via vehicle p CTW 

rc + 11.5 + 7.0 −6.6 −8.7 + 2.8 + 1.4 −5.4 −4.1 

tc −38.9 −17.1 + 15.1 + 33.4 −2.4 −1.7 −1.6 −0.2 

hc + 8.0 + 4.1 −4.0 −7.4 + 1.4 + 1.1 −2.5 −3.4 

pc −6.6 −4.2 + 4.2 + 6.2 −0.8 −0.1 + 2.1 + 2.1 

Total −14.6 −7.1 + 6.6 + 12.9 −1.1 −0.5 + 0.5 + 0.9 

Unit rental for vehicle o CRS Unit rental for vehicle p CRW 

rc −15.0 −6.5 + 7.9 + 13.9 −36.0 −18.0 + 18.2 + 34.5 

tc −0.9 + 0.2 + 0.4 0.0 −0.3 −0.3 0.0 −0.7 

hc −0.1 + 0.2 + 0.5 0.0 + 1.0 + 0.8 0.0 −0.8 

pc + 0.6 −0.1 −0.2 0.0 + 0.1 + 0.1 0.0 + 0.5 

Total −0.2 −0.1 + 0.2 + 0.2 −0.6 −0.3 + 0.3 + 0.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total costs tend to decrease with lower unit penalty cost and increase with higher unit penalty cost. The quantity of type

2 and 3 items delivered to the affected locations changes slightly. However, the delivered quantity of type 1 items greatly

decreases (increases) with lower (higher) unit penalty cost. Since type 1 items have the lowest unit penalty cost, the model

tends to hire fewer vehicles to deliver them. This case shows that distribution decisions for type 1 items are sensitive to the

changes in unit penalty cost. In practice, the tolerance of managers to unsatisfied demand can be revealed by unit penalty

cost. 

(3) Effects of inventory 

When suppliers’ inventory decreases, its impact on costs is larger than decrease of warehouses’ inventory. This is because

supplies should be transported from further sources. Therefore, reserving a certain quantity of supplies that are adjacent to

areas prone to earthquakes is particularly beneficial. When suppliers’ inventory increase, its impact on costs is smaller than

increasing of warehouses’ inventory. This indicates that the larger the quantity of initial supplies reserved in areas that are

prone to earthquakes, the more time- and cost-efficiencies can be achieved in relief distribution operations. In practice, to

achieve above-mentioned goals, the relief agency should pre-positioning more relief supplies at strategic warehouses on one

hand. On the other hand, they should establish a close relationship with commercial suppliers (e.g., supermarkets). Once

needed, these suppliers could deliver relief supplies to designated locations in the first time to ensure that the affected

people can receive timely and effective assistance. 

(4) Effects of transportation cost 

Total costs tend to increase (decrease) with the increase (decrease) of unit transportation cost of airplanes and trains.

It has a small influence on costs when changing the unit transportation cost of trucks and helicopters. According to the

results, the quantity of type 1 items delivered tends to increase when the unit transportation cost of airplanes and trains

decrease. This implies that negotiating for low transportation fees for long distance transportation is conducive to supply of

type 1 items. 

(5) Effects of rental and quantity of vehicles 

Apart from rental cost, another three sub-costs and total costs are slightly affected to changes in the unit rental of

vehicles. As rental cost accounts for a small percentage of total costs, increasing unit rental has no significant influence on

distribution decisions. This can happen only if the number of vehicles is large enough. Total costs and distribution decisions

are very sensitive to changes in the quantity of vehicles, and the results are analyzed below. 

Penalty cost increases sharply when the quantity of VW (i.e., trucks and helicopters) decrease by 50%, or the quantity of

VS (i.e., airplanes and trains) decrease by 75%. This is because no enough vehicles could be hired. For instance, in the case
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Table 9 

Sensitivity of the costs to the changes in the quantity of vehicles. 

Quantity of vehicle o VS Quantity of vehicle p VW 

−75% −50% −25% + 25% + 50% −50% −25% + 25% + 50% + 75% + 100% 

rc −23.5 + 30.3 + 8.3 −2.4 −2.3 −13.0 −4.7 + 5.8 + 0.3 −9.2 −16.6 

tc −47.6 0.0 + 0.2 0.0 0.0 −29.2 −7.3 + 3.6 + 5.4 + 5.4 + 5.4 

hc −43.4 0.0 + 0.2 0.0 0.0 −20.5 −5.2 + 3.6 + 4.0 + 4.0 + 4.0 

pc + 712.5 0.0 −0.1 0.0 0.0 + 331.2 + 81.5 −70.6 −80.3 −80.3 −80.3 

Total + 421.5 + 0.5 + 0.1 0.0 0.0 + 193.8 + 47.7 −42.1 −47.6 −47.8 −47.9 

Table 10 

Sensitivity of the costs to the changes in the quantity of helicopters. 

−100% −75% −50% −25% + 25% + 50% + 75% + 100% 

rc −69.1 −40.0 −12.4 −5.8 + 6.7 + 2.2 −6.8 −14.3 

tc −25.7 −21.0 −14.1 −6.4 + 3.5 + 5.4 + 5.4 +5.4 

hc −23.7 −14.7 −11.0 −5.2 + 3.4 + 4.0 + 4.0 +4.0 

pc + 1015.8 + 443.1 + 211.4 + 81.1 −70.5 −80.3 −80.3 −80.3 

Total + 615.5 + 265.1 + 125.1 + 47.6 −42.0 −47.6 −47.8 −47.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of there being 150 trucks and 75 helicopters available at most when VW decreases by 50%. However, the largest demand for

trucks and helicopters is 186 and 150 under scenario 2–6 (see Fig. 8 ). We also observe that transportation cost and handling

cost tend to decrease when VW decreases. This is explained by the fact that the model tends to stop transporting relief

supplies to warehouses if supplies cannot reach affected locations. Reducing the fleet size leads to a much less efficient

distribution of relief supplies. According to the results, penalty cost is particularly sensitive to the changes in the quantity of

helicopters. Penalty cost will increase ten folds when the quantity of helicopter decreases to zero. With the increase in the

quantity of helicopters, penalty cost decrease until the quantity increases up to 50%. This result reveals that the expansion

of fleet size cannot always guarantee a marginal decrease in penalty cost and total costs. The sensitivity of the costs to the

changes in the quantity of vehicles is investigated below and shown in Table 9 . Table 10 shows the sensitivity of the costs

to the changes in the quantity of helicopters. 

In summary, these results imply that relief agencies should focus on establishing agreements with carriers that own

and operate large vehicle fleets, even though this may lead to higher unit rental. This would be particularly beneficial for

improving overall disaster relief distribution. Moreover, infrastructure is often damaged in disasters, network disruption can

strongly impact distribution decisions if there is no backup distribution plan, such as helicopter transportation or air-drop

of supplies. The primary insight offered by a variety of solutions is that relief agencies can choose a solution that will have

good overall effectiveness for disaster relief distribution. 

(6) Effects of road capacity and quantity of helicopters 

There is no general approach to design road capacity of scenarios. Hence, different road capacity sets may result in

various distribution decisions. Relief agencies may want to know the tendency of total costs to changes in road capacity.

For road capacity, we modify its value from −50% of the original input to + 50%. Furthermore, this is intuitive, increasing

quantity of helicopter is an efficient way to reduce the impact of decreasing of road capacity on total costs. Therefore, we

will next illustrate the tendency of total costs to changes in road capacity and quantity of helicopters. For the quantity of

helicopters, we modify its value from −100% of the original input to + 100%. Fig. 9 shows the tendency of total costs to

changes in road capacity and quantity of helicopters. 
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Table 11 

Performance of PHA to the changes in the penalty update multipliers. 

qw ( βD , βP ) w ( βD , βP ) Iterations CPU time (s) Costs (CNY) GAP (%) 

(1,1) (1,1) 55 571 92,883,947 0.02 

(1,1) (1,2) 55 571 92,883,947 0.02 

(1,1) (1.5,2) 46 481 92,881,839 0.02 

(1,1) (2,2) 102 1,041 94,027,870 1.25 

(1,2) (1,1) 55 571 92,883,947 0.02 

(1,2) (1,2) 55 571 92,883,947 0.02 

(1,2) (1.5,2) 46 481 92,881,839 0.02 

(1,2) (2,2) 58 601 92,961,761 0.11 

(1.5,2) (1,1) 78 801 92,881,593 0.02 

(1.5,2) (1,2) 66 681 92,875,622 0.01 

(1.5,2) (1.5,2) 41 431 92,878,985 0.02 

(1.5,2) (2,2) 63 651 133,362,954 43.61 

(2,2) (1,1) 81 831 100,098,585 7.79 

(2,2) (1,2) 86 881 92,877,565 0.02 

(2,2) (1.5,2) 47 491 92,882,207 0.02 

(2,2) (2,2) 64 661 95,492,404 2.83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the results, when the quantity of helicopter decrease, total costs tend to increase sharply. For instance, when

the quantity of helicopter and road capacity decrease by 100% and 50%, respectively, total costs increase by 527%. When the

quantity of helicopter decrease, + 50% change in road capacity has the lowest total costs, followed by + 25%, −25%, −50%.

This occurs because of unsatisfied demand for relief supplies is higher due to lower road capacity. We also observe that the

decrease in the quantity of helicopter has a greater impact on total costs than the increase in the quantity of helicopter.

For instance, total costs decrease by only 59% (compared to 527%) when the quantity of helicopter increase from 0 to 100%

for −50% change of road capacity. As the quantity of helicopter increase, the impact of decreasing of road capacity on total

costs would vanish. For instance, for + 50%, + 25%, −25%, −50% changes of road capacity, their total costs are almost the

same when the quantity of helicopter increase up to 50%. This implies that establishing agreements with carriers that offer

a large number of helicopters would be particularly beneficial for disaster relief distribution, especially for highly uncertainty

of road network capacity. 

5.3. Performance of PHA 

In this section, we test the solution quality and computational speed of PHA using different datasets. The PHA was coded

in MATLAB 2013a environment, and we use CPLEX 12.6 as a solver of each sub-problem. For the 16 scenario cases with

set ys ( βD , βP ) = (2,2), the performance of PHA to the changes in the penalty update multipliers is shown in Table 11 . The

sub-problems can be solved within 3 s by CPLEX. In particular, the sub-problem can be solved within 1 s after the value of

variable w is fixed. Results show that PHA can converge with the least time consumption involved when qw ( βD , βP ) = (1.5,2).

However, when qw ( βD , βP ) = (1.5,2), w ( βD , βP ) = (1, 2), the overall costs improve by 0.01% while computational speed falls

58%. We also observed that worse solutions can be obtained when set w ( βD , βP ) = (2,2). 

As shown before, the optimal solutions of the 16 scenarios can be found within 117 s using CPLEX. PHA took

431 s and had a 0.02% gap to the optimal objective value. However, multi-stage stochastic programs become time-

consuming when using commercial solvers (such as CPLEX or GUROBI) to solve large problems. We set ys ( βD , βP ) = (2,2) ,

qw ( βD , βP ) = w ( βD , βP ) = (1.5,2), Table 12 shows the performances of CPLEX and PHA for the proposed model with dif-

ferent datasets. The upper and lower bounds are obtained when we stopped CPLEX after running for 3,600 s. The results

demonstrate that the PHA can obtain a much better upper boundary within less time for problems with larger datasets

of warehouses and scenarios. Moreover, the use of CPLEX for large problems (such as more suppliers, warehouses, affected

locations, and scenarios) is not feasible because of limitations in memory and space. For the case of 9 warehouses and 50
Table 12 

Performances of CPLEX and PHA for the proposed model with different datasets. 

( K, S ) CPLEX PHA 

Upper bound ( × 10 7 ) Lower bound ( × 10 7 ) GAP (%) Costs ( × 10 7 ) CPU time (s) GAP (%) 

(6,40) 9.939 9.936 0.03 9.942 916 0.06 

(6,50) 10.868 10.814 0.49 10.837 772 0.21 

(6,60) 158.417 10.807 93.18 10.824 1,053 0.16 

(9,40) 8.018 8.015 0.04 8.056 989 0.5 

(9,50) 23.916 8.940 62.62 8.941 1,277 0.01 

(9,60) 24.271 8.942 63.16 8.957 1,543 0.17 
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scenarios, CPLEX displays out of memory status after running for 5,685 s. This evaluation demonstrates the solution quality

and computational advantages of using PHA. 

Before the value of variable w is fixed, for datasets with larger suppliers, warehouses or affected locations, a scenario

sub-problem would expend more time. In 9 warehouses cases, a sub-problem expends at least 5 more seconds. PHA works

better if employing a more efficient algorithm instead of CPLEX for solving subproblems. The idea of PHA is to decompose

the problem, and its advantages gradually emerge as the scenario size grows. However, PHA requires large periods of time

to solve scenario sub-problems. This can be dramatically reduced by using the parallelization method. 

6. Conclusions 

A multi-stage stochastic programming model is developed to coordinate vehicles and schedule distribution plans. Sup-

plier capacity, local warehouses handling capacity, multiple transportation modes, and the uncertainty attached to network

capacity are integrated into our model to study their effects on distribution decisions. A case study is presented to study

the applicability of the proposed model, along with solution quality and the computational advantages associated with PHA.

Based on the results of the numerical analysis, several practical implications are identified in this study. (1) The larger

the quantity of initial supplies reserved in areas that are prone to earthquakes, the more time- and cost-efficiencies can

be gained by relief distribution operations. (2) The expansion of fleet size should guarantee that increasing a vehicle can

bring a large marginal decrease in penalty cost and total cost. (3) Relief agencies should focus on being cost-efficient in long

distance transportation by negotiating for low transportation fees. They should focus on the reliability of local distribution

by preparing backup distribution plans (such as helicopters or air-drops). The proposed model can be used to study a va-

riety of strategies on location, inventory, and distribution of relief supplies so that relief agencies can make plans for relief

distribution when faced with secondary disasters. 

Our research suggests several directions for future research. (1) Carrier reliability. This paper implies that the availability

of vehicles is not affected. However, there may well be risks involved when carriers do not meet vehicle demands for

quantity and timing because of uncertainty. Incorporating carrier reliability into the model may be worth exploring in future

research. (2) Investigating carrier selection criteria and types of contracts. This paper does not focus on the details of carrier

selection criteria, nor on the exact type of contract with carriers. There is a need for new types of relationships and contracts

that allow for more flexible or incentive-based terms, and these relationships should enable parties to equitably share those

risks and benefits ( Balcik et al., 2010 ). (3) Considering deprivation costs, which is caused by the lack of access to a good or

service ( Cantillo et al., 2018 ). In most disaster contexts, relief supplies are frequently insufficient to satisfy the needs of all

affected locations. To allocate scarce resources efficiently, trade-offs between economic costs and deprivation costs should

be considered. 
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Appendix A. The multi-stage deterministic model 

For each scenario sequence n , the multi-stage deterministic model is formulated as follows. 

f = min 

∑ 

t 

( r c t + t c t + h c t + p c t ) 

r c t = 

∑ 

i,o,l 

(
ys n i,o,l,t · CRS o,l,t 

)
+ 

∑ 

k,p,l 

(
yw 

n 
k,p,l,t · CRW p,l,t 

)
, ∀ t 

t c t = 

∑ 

i,k,o,a 

(
CT S o,a · HS i,k · qs n i,k,o,a,t 

)
+ 

∑ 

k, j,p,a 

(
CT W p,a · HW k, j · qw 

n 
k, j,p,a,t 

)
, ∀ t 

h c t = 

∑ 

k,a 

CH a · h 

n 
k,a,t , ∀ t 

p c t = 

∑ 

j,a 

G a · z n j,a,t , ∀ t 

∑ 

k 

w 

n 
k ≤ γ

http://dx.doi.org/10.13039/501100001809
https://doi.org/10.13039/501100003399
https://doi.org/10.13039/501100002338
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w 

n 
k ≤

∑ 

p,l,t 

yw 

n 
k,p,l,t ≤ M · w 

n 
k , ∀ k 

∑ 

l 

xs n o,l,t ≤ 1 , ∀ o, t 

∑ 

l 

xw 

n 
p,l,t ≤ 1 , ∀ p, t 

xs n o,l,t−1 ≤
∑ 

i 

ys n i,o,l,t ≤ xs n o,l,t−1 · V S o,l , ∀ o, l; t ≥ 2 

xw 

n 
p,l,t−1 ≤

∑ 

k 

yw 

n 
k,p,l,t ≤ xw 

n 
p,l,t−1 · V W p,l , ∀ p, l; t ≥ 2 

∑ 

j 

y k, j,p,t = 

∑ 

l 

yw k,p,l,t , ∀ k, p; t ≥ 2 

qs n i,k, 1 ,a, 1 = 0 , ∀ i, k, a, n 

qs n i,k, 2 ,a,t = 0 , ∀ i, k, o, a ; t ≤ 2 

∑ 

k,a 

qs n i,k, 1 ,a,t · μa ≤
∑ 

l 

ys n i, 1 ,l,t · ES 1 , ∀ i ; t ≥ 2 

∑ 

k,a 

qs n i,k, 2 ,a,t · μa ≤
∑ 

l 

ys n i, 2 ,l,t−1 · ES 2 , ∀ i ; t ≥ 3 

qw 

n 
k, j,p,a, 1 = 0 , ∀ k, j, p, a 

∑ 

a 

qw 

n 
k, j,p,a,t · μa ≤ y k, j,p,t · EW p , ∀ k, j, p; t ≥ 2 

∑ 

k,o 

qs n i,k,o,a,t ≤ U i,a , ∀ i, a, t 

∑ 

a 

qw 

n 
k, j, 1 ,a,t · μa ≤ ϕ k, j,t , ∀ k, j, t 

v n k,a, 1 = R k,a · w 

n 
k , ∀ k, a 

v n k,a,t = v n k,a,t−1 + 

∑ 

i,o 

qs n i,k,o,a,t −
∑ 

j,p 

qw 

n 
k, j,p,a,t , ∀ k, a ; t ≥ 2 

h 

n 
k,a,t ≥

∑ 

i,o 

qs n i,k,o,a,t + 

∑ 

j,p 

qw 

n 
k, j,p,a,t − Q k,a , ∀ k, a, t 

z n j,a, 1 = 0 , ∀ j, a 

z n j, 1 ,t = D j, 1 −
∑ 

k,p 

qw 

n 
k, j,p, 1 ,t , ∀ j; t ≥ 2 

z n j,a, 2 = D j,a −
∑ 

k,p 

qw 

n 
k, j,p,a, 2 , ∀ j; a ≥ 2 

z n j,a,t = z n j,a,t−1 −
∑ 

k,p 

qw 

n 
k, j,p,a,t , ∀ j; a ≥ 2 , t ≥ 3 

w 

n 
k ∈ { 0 , 1 } , ∀ k 

xs n o,l,t ∈ { 0 , 1 } , ∀ o, l, t 

xw 

n 
p,l,t ∈ { 0 , 1 } , ∀ p, l, t 

ys n i,o,l,t , yw 

n 
k,p,l,t , y 

n 
k, j,p,t , qs n i,k,o,a,t , qw 

n 
k, j,p,a,t , v 

n 
k,a,t , h 

n 
k,a,t , z 

n 
j,a,t ∈ Z + , ∀ i, j, k, o, p, a, t 
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Appendix B. Distance matrix 

Distance between suppliers and warehouses (unit: km) 

Supplier Warehouses’ location 

Yucheng Mingshan Qionglai Dayi Danling Pujiang 

Zhenzhou 1319 1309 1257 1239 1311 1279 

Xian 842 832 781 763 835 803 

Lanzhou 989 979 1026 1008 1080 1048 

Wuhan 1301 1291 1229 1203 1206 1225 

Changsha 1329 1319 1280 1262 1241 1276 

Nanchang 1622 1612 1573 1520 1550 1569 

Nanning 1284 1274 1256 1266 1216 1257 

Kunming 766 756 831 853 810 824 

Guiyang 717 707 689 700 650 691 

Chongqing 445 435 397 379 367 393 

Distance between warehouses and disaster-affected locations (unit: km) 

Location Yucheng Mingshan Tianquan Lushan Baoxing Qionglai Dayi Danling Pujiang 

Yucheng 15 13.3 41.1 35.3 77.9 67.6 90.4 84.5 60.9 

Mingshan 13.3 15 51.8 45.9 88.6 57.5 80.3 74.3 50.8 

Qionglai 67.6 57.5 106.1 100.2 142.9 15 27.1 55.1 32.1 

Dayi 90.4 80.3 128.9 123.1 165.7 27.1 15 83.7 61.5 

Danling 84.5 74.3 123 117.1 159.8 55.1 83.7 15 24.1 

Pujiang 60.9 50.8 99.4 93.5 136.2 32.1 61.5 24.1 15 

Mendeley data 

Mendeley data for road network capacity associated with this article can be found in the online version. 
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