黄鹏,特聘研究员,欧盟玛丽居里学者,四川省天府峨眉和成都市蓉漂青年人才。
2018年获苏州大学博士学位,导师李永舫院士。2019至2022年在西班牙巴斯克先进纳米材料中心和瑞士洛桑联邦理工学院开展博士后研究,2022年8月入职西南交通大学组建智能光电器件(Smart Optoelectronics Device)团队。
作为项目负责人主持欧盟玛丽居里学者计划,四川省自然科学基金,四川省天府峨眉计划青年人才(原省青年千人),成都市蓉漂计划(重点高校引才支持专项),中央高校基本科研业务费,西南交大新型交叉学科培育,研究员启动经费等项目,并作为项目骨干参与欧盟理事会巩固基金,国家自然科学基金面上项目和西班牙科技创新部等项目。
已发表SCI论文40篇以上,以第一作者和通讯作者在Adv. Energy Mater., ACS Energy Lett., Small, Chem Eng. J., ACS Appl. Mater. Interfaces, J. Mater. Chem. A等高水平的期刊发表论文21篇。
研究方向
1) 钙钛矿太阳能电池
2) 二维过渡金属硫化物
3) 光电器件制备与应用
招生招聘
1) 低年级本科生:2名/年
2) 硕士研究生:2-3名/年
3) 博士研究生:1名/年
联系方式:phuang@swjtu.edu.cn
发表论文
(1) Luo, H.; Gao, Z.; Muwanwella, H.; Sanfo, G.; Lu, Y.; Yang, S.; Ren, Y.; Hou, S.; Liu, X.; Sharma, P. K.; Palgrave, R.; Sajjad, M. T.; Huang P.*; Abdi‐Jalebi, M. Multifunctional Polymer Matrix at the Buried Interface Boosting Stability and Efficiency in Perovskite Solar Cells. Small 2025, e07718. https://doi.org/10.1002/smll.202507718.
(2) Wang, J.; Zou, S.; Yuan, L.; Cheng, W.; Liu, Y.; Wei, J.; Luo, H.; Zhang, Z.; Huang P.*; Sun, J.; Yan, K. α-Lipoic Acid Mediates Rapid Spiro-OMeTAD Doping for High-Performance Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2025, No. 17(38), 54254–54262. https://doi.org/10.1021/acsami.5c13347.
(3) Gao, Z.; Kou, J.; Lv, W.; Chen, Y.; Ren, L.; Huang P.* Tailoring Self-Assembled Monolayers with Post-Assembly Nicotinic Acids for Efficient and Ultraviolet Stable Inverted Perovskite Solar Cells. J. Mater. Chem. A 2025, 13 (32290–32299), 32290–32299. https://doi.org/10.1039/D5TA04393J.
[2025 Emerging Investigators]
(4) Cheng, W.; Huang P.*; Gao, Z.; Chen, Y.; Ren, L.; Feng, Q.; Liu, X.; Ahmad, S.; Zhou, Z. Molecular Bridging of Buried Interface Flattens Grain Boundary Grooves and Imparts Stress Relaxation for Performance Enhancement and UV Stability in Perovskite Solar Cells. Advanced Energy Materials 2025, 15 (30), 2501296. https://doi.org/10.1002/aenm.202501296.
西南交通大学-交大要闻报道,新闻链接:https://news.swjtu.edu.cn/info/1011/82005.htm
(5) Li, Z.-Z.; Guo, C.; Lv, W.; Huang P.*; Zhang, Y. Machine Learning-Enabled Optical Architecture Design of Perovskite Solar Cells. J. Phys. Chem. Lett. 2024, 15 (4), 3835–3842. https://doi.org/10.1021/acs.jpclett.4c00320.
(6) Yao, X.; Tang, X.; Wu, M.; Wang, Z.; Zhang, H.; Wang, H.; Wang, H.; Zhang, H.; Wang, F.; Zheng, Y.; Huang P.*; Wang, D.; Liu, X. Interfacial and Doping Synergistic Effect of Versatile Potassium Acetate toward Efficient CsPbI 2 Br Perovskite Solar Cells. ACS Appl. Energy Mater. 2023, 6 (11), 5997–6005. https://doi.org/10.1021/acsaem.3c00448.
(7) Wang, H.; Xu, H.; Wu, S.; Wang, Y.; Wang, Y.; Wang, X.; Liu, X.; Huang P.* Synergistic Lattice Regulation of Additive and Interface Engineering to Realize High Efficiency CsPbI2Br Perovskite Solar Cell. Chemical Engineering Journal 2023, 476, 146587. https://doi.org/10.1016/j.cej.2023.146587.
(8) Wang, H.; Wu, S.; Zhang, H.; Yao, X.; Wang, F.; Huang P.*; Liu, X. Suppressing the Light Soaking Effect of CsPbI2Br Based P-i-n Perovskite Solar Cells. Solar RRL 2023, 7 (20), 2300369. https://doi.org/10.1002/solr.202300369.
(9) Huang P.; Sheokand, M.; Payno Zarceño, D.; Kazim, S.; Lezama, L.; Nazeeruddin, M. K.; Misra, R.; Ahmad, S. Molecular Tailoring of Pyridine Core-Based Hole Selective Layer for Lead Free Double Perovskite Solar Cells Fabrication. ACS Applied Energy Materials 2023, 6 (15). https://doi.org/10.1021/acsaem.3c01027.
(10) Huang P.; Manju; Kazim, S.; Lezama, L.; Misra, R.; Ahmad, S. Leverage of Pyridine Isomer on Phenothiazine Core: Organic Semiconductors as Selective Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (4), 5729–5739. https://doi.org/10.1021/acsami.1c21996.
(11) Huang P.; Manju; Kazim, S.; Lezama, L.; Misra, R.; Ahmad, S. Tailoring of a Phenothiazine Core for Electrical Conductivity and Thermal Stability: Hole-Selective Layers in Perovskite Solar Cells. ACS Applied Materials and Interfaces 2021, 13 (28), 33311–33320. https://doi.org/10.1021/acsami.1c08470.
(12) Huang P.; Hernández, A.; Kazim, S.; Follana-Berná, J.; Ortiz, J.; Lezama, L.; Sastre-Santos, Á.; Ahmad, S. Asymmetrically Substituted Phthalocyanines as Dopant-Free Hole Selective Layers for Reliability in Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (9), 10124–10135. https://doi.org/10.1021/acsaem.1c02039.
(13) Huang P.; Manju; Kazim, S.; Sivakumar, G.; Salado, M.; Misra, R.; Ahmad, S. Pyridine Bridging Diphenylamine-Carbazole with Linking Topology as Rational Hole Transporter for Perovskite Solar Cells Fabrication. ACS Applied Materials & Interfaces 2020, 12 (20), 22881–22890. https://doi.org/10.1021/acsami.0c03584.
(14) Huang P.; Hernández, A.; Kazim, S.; Ortiz, J.; Sastre-Santos, Á.; Ahmad, S. Molecularly Engineered Thienyl-Triphenylamine Substituted Zinc Phthalocyanine as Dopant Free Hole Transporting Materials in Perovskite Solar Cells. Sustainable Energy & Fuels 2020, 4 (12), 6188–6195. https://doi.org/10.1039/D0SE01215G.
(15) Huang P.; Chen, Q.; Zhang, K.; Yuan, L.; Zhou, Y.; Song, B.; Li, Y. 21.7% Efficiency Achieved in Planar n–i–p Perovskite Solar Cells via Interface Engineering with Water-Soluble 2D TiS 2. J. Mater. Chem. A 2019, 7 (11), 6213–6219. https://doi.org/10.1039/C8TA11841H.
(16) Huang P.; Kazim, S.; Wang, M.; Ahmad, S. Toward Phase Stability: Dion-Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters 2019, 4 (12), 2960–2974. https://doi.org/10.1021/acsenergylett.9b02063.
(17) Huang P.; Yuan, L.; Zhang, K.; Chen, Q.; Zhou, Y.; Song, B.; Li, Y. Room-Temperature and Aqueous Solution-Processed Two-Dimensional TiS2 as an Electron Transport Layer for Highly Efficient and Stable Planar n–i–p Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10 (17), 14796–14802. https://doi.org/10.1021/acsami.8b03225.
(18) HUANG P.; YUAN, L.; LI, Y.; ZHOU, Y.; SONG, B. L-3, 4-Dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: Towards High-Performance Planar p-i-n Perovskite Solar Cells. Acta Physico-Chimica Sinica 2018, 34 (11), 1264–1271. https://doi.org/10.3866/PKU.WHXB201804096.
(19) Cao, T.; Huang P. (co-first); Zhang, K.; Sun, Z.; Zhu, K.; Yuan, L.; Chen, K.; Chen, N.; Li, Y. Interfacial Engineering via Inserting Functionalized Water-Soluble Fullerene Derivative Interlayers for Enhancing the Performance of Perovskite Solar Cells. J Mater Chem A 2018, 6 (8), 3435–3443. https://doi.org/10.1039/C7TA10366B.
(20) Huang P.; Wang, Z.; Liu, Y.; Zhang, K.; Yuan, L.; Zhou, Y.; Song, B.; Li, Y. Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p-i-n Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9 (30), 25323–25331. https://doi.org/10.1021/acsami.7b06403.
(21) Huang P.; Liu, Y.; Zhang, K.; Yuan, L.; Li, D.; Hou, G.; Dong, B.; Zhou, Y.; Song, B.; Li, Y. Catechol Derivatives as Dopants in PEDOT:PSS to Improve the Performance of p–i–n Perovskite Solar Cells. Journal of Materials Chemistry A 2017, 5 (46), 24275–24281. https://doi.org/10.1039/C7TA08827B.
谷歌学术主页:https://scholar.google.com/citations?user=Yd6_3sYAAAAJ&hl=en
Researachgate: https://www.researchgate.net/profile/Peng-Huang-29?ev=hdr_xprf
主持项目
1) (国)欧盟玛丽·居里学者计划(2020-2022)
2) (国)中央高校基本科研业务费(2022-2024)
3) (省)四川省天府峨眉计划青年人才(2024-2026)
4) (省)四川省自然科学基金(2024-2026)
5) (市)成都市蓉漂计划(2024-2026)
6) (校)西南交通大学新型交叉学科培育(2022-2024)
7) (校)西南交通大学研究员启动经费(2022-2024)
[1]新型半导体材料研制与应用
[2]新型光电探测器
[3]钙钛矿光伏材料和器件
报考该导师研究生的方式欢迎你报考黄鹏老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择黄鹏老师,你的所有申请信息将发送给黄鹏老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请黄鹏老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为黄鹏老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考黄鹏老师招收的专业和方向,进入复试后提交导师意向时选择黄鹏老师。
4、如果你有兴趣攻读黄鹏老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。